
Using Multiple-Precision Arithmetic

David M. Smith

Loyola Marymount University

There are many different kinds of problems for which high precision calculation can be useful.

The most common situation involves a computation that is numerically unstable, so that using

double precision is not sufficient to get the final result as accurately as it is needed.

We will use the term “significant digits” to mean the number of equivalent decimal digits of

precision, as opposed to the actual number of digits carried when the base is not ten. For most

current machines, double precision is the highest accuracy provided in hardware, and this is 53

digits in base 2, or around 16 significant digits. Being able to do a calculation with 30 or 40

significant digits will often overcome the instability and give adequate accuracy for the final result.

Even though the term “multiple-precision” may first bring to mind applications such as the

computation of billions of digits of π, most actual applications use precisions of a few tens of digits,

rather than millions or even hundreds.

As an example of such a calculation, let us look at the computation of the Bessel function J1(x)

for |x| up to a few hundred. If we actually needed to compute J1(x), there are existing libraries

that could be used, but we might have a similar formula that is not one of these standard functions.

For small values of x, there is a convergent series,

J1(x) =

∞∑
k=0

(−1)k x2k+1

22k+1 k! (k + 1)!
.

This formula is easy to understand and easy to compute, but it becomes more unstable as |x| gets

larger. There are often other algorithms available. For J1(x) there is an asymptotic series that is

stable for large x, and a backward recurrence that might bridge the gap between the convergent

and asymptotic series.

If we were developing a library routine for J1(x), we would need to include many of these

different formulas and select the best one depending upon x. But if we merely need to compute

a few (or a few thousand) values for small and moderate sized x, it may be more cost-effective to

code just the simple formula and use multiple-precision to control the instability. And even the

developers of double precision library routines often use multiple-precision to check their results.

Consider this calculation when x = 35.3. Program 1 uses Fortran and double precision on a

32-bit computer to sum the series. The term x2k+1/22k+1 is done in the loop as (x/2)2k+1, but

the other power functions are left in the loop, to keep some resemblance of the code to the original

formula. If we wanted to tune the code for more speed, the remaining power functions could be

1



replaced with a single multiplication by −(x/2)2 each time through the loop. Printing out the

partial sums of the series every few terms shows the instability.

Program 1

PROGRAM BESSEL

DOUBLE PRECISION :: X,S,FACT

INTEGER :: K

S = 0

X = 35.3D0/2

FACT = 1

DO K = 0, 70

S = S + (-1)**K * X**(2*K+1) / ( FACT * FACT * (K+1) )

FACT = FACT * (K+1)

IF (MOD(K,5) == 0) THEN

WRITE (*,"(A,I3,A,E25.15)") " K = ",K," S = ",S

ENDIF

ENDDO

END PROGRAM BESSEL

Output from this program:

K = 0 S = 0.176500000000000E+02

K = 5 S = -0.545194332007876E+09

K = 10 S = 0.764675659761547E+12

K = 15 S = -0.896891165457883E+13

K = 20 S = 0.433357476151880E+13

K = 25 S = -0.191563479309724E+12

K = 30 S = 0.124759447806175E+10

K = 35 S = -0.164218062418216E+07

K = 40 S = 0.547220520808295E+03

K = 45 S = -0.481654815068169E-01

K = 50 S = 0.648516866704781E-02

K = 55 S = 0.648330340078305E-02

K = 60 S = 0.648330342495567E-02

K = 65 S = 0.648330342495554E-02

K = 70 S = 0.648330342495554E-02

2



Since the final result of the sum is about 15 orders of magnitude less than some of the partial

sums, we don’t have much confidence in any of the digits of that result.

Next, let us translate this program so it will use the FM multiple-precision package (FM stands

for Floating-point Multiple-precision). The FM package is written in Fortran. The code and a set

of sample programs can be found at http://myweb.lmu.edu/dmsmith/FMLIB.html, along with

papers describing the organization of the package and the algorithms used.

Before Fortran-90, translating an existing program to use a multiple-precision package was

fairly arduous. The multiple-precision operations consist of basic arithmetic, type conversions,

mathematical functions, and so on. Each one is performed by a separate subroutine, so translating

required converting the Fortran commands into calls to the appropriate subroutines.

A short Fortran statement like “ C = A + B ” might be translated to “ CALL FM ADD(A,B,C) ”.

Longer statements like the formula in Program 1 turn into many lines of code, since each call

performs only a single arithmetic operation or function.

Beginning with Fortran-90 in the early 1990s, derived types and operator overloading became

part of the language. Now it is possible to write interface modules that tell the compiler how

to automatically convert Fortran arithmetic expressions into calls to the various multiple-precision

routines. This makes the conversion process much easier, since most of the original code can remain

unchanged.

These are the changes made to Program 1 to get Program 2, the FM version.

1. Put “USE FMZM” at the top of each routine. This tells the compiler where to find all the rules

for replacing arithmetic operations and intrinsic function calls (like ∗∗) by FM calls.

2. Change the variable declarations. “DOUBLE PRECISION” becomes “TYPE (FM)”.

Add a new character variable, ST1, used to format FM numbers for output. The integer

declarations do not need to be changed, since we don’t need multiple-precision integers here.

3. Set the FM precision level by calling FM SET with the number of significant digits we want. In

this case, we prompt the user to enter this value.

4. Change double precision constants to FM constants. 35.3D0 becomes TO FM("35.3").

5. Change the WRITE statement to handle FM numbers. Routine FM FORM takes a character string

defining the format and an FM number, and returns a character string as the formatted result

to be printed by the WRITE statement.

3



Program 2

PROGRAM BESSEL

USE FMZM

TYPE (FM) :: X,S,FACT

INTEGER :: K,SD

CHARACTER(80) :: ST1

WRITE (*,*) " Enter the number of significant digits to use."

READ (*,*) SD

CALL FM SET(SD)

S = 0

X = TO FM("35.3")/2

FACT = 1

DO K = 0, 70

S = S + (-1)**K * X**(2*K+1) / ( FACT * FACT * (K+1) )

FACT = FACT * (K+1)

IF (MOD(K,5) == 0) THEN

CALL FM FORM("E25.15",S,ST1)

WRITE (*,"(I3,A,I3,A,A)") SD," significant digits: K = ", &

K," S = ",TRIM(ST1)

ENDIF

ENDDO

END PROGRAM BESSEL

Final line of output from this program when run with different precision levels:

15 significant digits: K = 70 S = .433726793549236M-2

20 significant digits: K = 70 S = .433726598367081M-2

25 significant digits: K = 70 S = .433726598367081M-2

30 significant digits: K = 70 S = .433726598367077M-2

40 significant digits: K = 70 S = .433726598367077M-2

Comparing the output from Program 1 to these higher-precision results shows that none of the

digits computed in double precision are correct. When we ask for 15 significant digits from FM,

six digits are correct at the end of the sum.

4



When FM uses E format for output, as with the variable S above, "M" is used in place of "E" to

signify the output of an FM number. If this output needs to be read as input to another program

not using multiple-precision, we can have FM use "E" or "D" instead.

Understanding some of the internal details of how FM does arithmetic can help us interpret

these results. For better speed, the default base for arithmetic is large (107 on this machine). So

computing one more digit in base 107 gives seven more significant digits of precision.

For the number π, normalization in base 107 makes 3 the first digit, 1415926 the second, and

so on. This means carrying four digits in base 107 provides about 1 + 3 ∗ 7 = 22 significant digits.

Increasing precision to five digits corresponds to about 29 significant digits.

When we ask for 15 significant digit precision in the first FM run, the program assumes we

need a few guard digits and sets the number of base 107 digits at the next higher value, four. This

means we really have around 22 significant digits during that calculation. After losing 16 of them

to cancellation error in the sum, we are left with about six correct significant digits.

When converting constants for the FM version, if we leave the line as X = 35.3D0/2, in-

stead of using the conversion function TO FM("35.3"), then X is correct only to double precision

accuracy. As expressed in base 2, the number 35.3 has an infinite repeating binary expansion

(100011.010011001100110011 . . .). Even before we use the constant 35.3D0, the act of converting

it from the base 10 form in our program to the base 2 double precision internal form creates an

error in about the 16th significant digit. The “X =” part of the statement later causes the double

precision value to be converted to FM precision, but the accuracy has already been lost.

For the same reason, TO FM(35.3D0) is also accurate only to double precision. Sending the

number to FM in character form insures that it is converted directly to an FM number with no

intermediate rounding. For cases where all floating-point constants in a large program might be

converted automatically, writing TO FM("35.3D0") is allowed, and will give full FM precision.

There are actually several different versions of conversion functions like TO FM, depending on

whether the argument is integer, single precision, double precision, or character. The user interface

modules invoked by the USE FMZM statement determine which individual conversion routine to use,

based on the type of the input argument.

It is not necessary to replace the 2 by TO FM("2") in this expression. Integers have no rounding

errors like 35.3, and the 2 will convert exactly. In fact, it is better to leave integer terms alone when

multiplying or dividing an FM number by an integer. There are separate subroutines for those

operations, and the special cases where one argument is an integer can be done more quickly.

An interesting feature in the Program 2 output is that we get the same result when we ask for

either 20 or 25 digits. This is because FM uses five base 107 digits in each case. In practice, when

we want to compare two FM runs at different precision levels, we need to increase the requested

number of base 10 digits by enough to force FM to choose a greater precision level.

If we compare just the results from the runs with 20, 30, and 40 digits, we know that they are

5



done at three different FM precision levels. The agreement in the last two indicates that we have

15 digit accuracy for J1(35.3).

As the example above shows, someone using software for high precision needs to know some

of the details about how the arithmetic works. Next we will examine a few more of the internal

workings of the FM package. For more information, consult references [1–4]. These and other

related papers can also be found at http://myweb.lmu.edu/dmsmith/FMLIB.html.

An FM number is stored as a list of integers in an array. This defines a floating-point number

in base b having n digits of precision. The user can set the values of b and n. If the elements of this

list are denoted xi, then x1 contains the exponent, x2 contains the first digit, and so on until xn+1

contains the last digit. The position of the radix point is assumed to be before x2, so the number

is (x2
b

+
x3
b2

+
x4
b3

+ · · ·+ xn+1

bn

)
× bx1 .

The digits are said to be normalized if 1 ≤ x2 < b, and 0 ≤ xi < b for i > 2. The sign of the

number is carried on another list element, which we ignore for these examples. Thus, if b = 10 and

n = 8, the number π is represented as {1, 3, 1, 4, 1, 5, 9, 2, 7}.
The algorithm for adding two of these numbers is fairly straightforward. Check the exponents

to see if one of the numbers needs to be shifted so that the decimal points are correctly aligned, then

add corresponding digits to form the sum. This takes about n steps as we loop over the individual

digits in the two lists. Then there is another loop with n more steps required to normalize the

digits in the sum, since they might be as large as 2b− 2.

This means the total number of operations for adding two n-digit numbers is proportional to

n, although there are several special cases that may add to this total. For example, if there is

a carry in the first digit before we normalize the digits (i.e., x2 ≥ b), then the other digits must

essentially be shifted right to make room for the new first digit and the exponent must be adjusted.

Actually, more than n digits of the sum are computed so that there will be some guard digits

to allow the sum to be correctly rounded back to n digits when returning the result. Even so, the

total effort to add the two numbers is no more than some small constant times n, so we say that

the work for addition is of order n, written O(n).

Next, consider the algorithm for multiplication. The classical method is given in Knuth [5],

and multiplies each digit of the first number by each digit of the second, for a total of n2 basic

operations. Then these terms are added in the right order to produce the 2n digits of the product.

As with addition, the digits must be normalized, rounding done, and special cases handled, but the

work for multiplication is O(n2).

Knuth also shows that some algorithms can multiply two n-digit numbers in O(n log(n)) steps,

but these methods are so complicated that they are not faster than the classical method unless n

is very large. If the classical method takes 3n2 time units and the “fast” method takes 150n log(n)

6



time units, then the second method will be better for large n, but the first will be better for n = 10.

This analysis of efficiency explains why it is better to choose a large base b for the arithmetic.

Suppose we want to compute xy with an accuracy of 30 significant digits. In base ten we have

n = 30, so the multiplication will take a few times n2 steps, which means several thousand steps.

But using b = 107 means seven significant digits are stored in each xi, except that the first digit,

x2, may have only one significant digit because of normalization. So n = 6 gives at least 30-digit

accuracy with this large base, and now the multiplication takes a few times 62 steps. Doing the

multiplication with the large base makes it over ten times faster.

One other consideration in choosing the base involves converting the numbers for input or

output. With standard 32-bit hardware, FM uses double precision arrays for the lists of integer

digits. In order to guarantee that these integers are represented exactly (no rounding) in double

precision, they must be less than 253 = 9 × 1015. The product of two digits in base b could be as

large as (b− 1)2, so in FM the base can be any integer from 2 to
√

9× 1015 = 9.5× 107.

Input or output operations require converting the FM numbers between base 10 and base b. In

general, this is as hard as multiplication and takes O(n2) steps. However, for the special case where

b is a power of ten this conversion can be done much more quickly, in O(n) steps. For example,

compare the work to convert π = { 1, 3, 1415926, 5358979, 3238463 } from base 107 to base ten for

output, with the work to convert π = { 1, 3, 13438029, 85761677, 92784528 } from base 94, 906, 265

to base ten. There is little loss of efficiency for the other arithmetic operations when the base is

reduced from 9.5× 107 to 107, and the faster input/output conversion more than makes up for it.

Getting back to some problems where multiple-precision can be useful, another case is one

where the double precision version of a program fails because of overflow. For example, what is the

probability of getting exactly 10,000 heads in 20,000 tosses of a fair coin?

The standard formula for the answer involves binomial coefficients,

p =

(
20, 000

10, 000

)
(0.5)20,000 = .00564182531222042

The difficulty here is not that we have lost accuracy, but that the two terms in the product are

about 2.2E+6018 and 2.5E-6021. For most current machines, the largest number that can be

represented in double precision is 1.8E+308, so the first term overflows and the second underflows.

As usual, there are ways an expert can overcome this overflow/underflow problem in double

precision. But since the FM overflow threshold is more than 1.0E+400000000, and there is a

built-in binomial coefficient routine, we can do it in one line:

P = BINOMIAL( TO FM(20000) , TO FM(10000) ) * TO FM("0.5") ** 20000

Sometimes FM is used to simulate the arithmetic of a particular computer. Suppose we have

developed an algorithm and we have tested it on a computer using 53-bit base 2 rounded arithmetic

7



(standard IEEE double precision). If a colleague needs to run our program on a different computer

with 14-digit base 16 chopped arithmetic (such as an IBM mainframe computer), we may want to

run some test cases on our machine to simulate the other one.

To run FM with a small base sacrifices some speed, but for cases like this one we can set the

number of digits, base, overflow/underflow threshold, and rounding mode. There is an automatic

tracing feature in FM that can also be useful in this type of application, if we want to see a log

where the input and result of each operation is listed.

For exception handling FM uses five special symbols, called ±OVERFLOW, ±UNDERFLOW, and

UNKNOWN. Functions and arithmetic operations are defined to handle these symbols and to return

non-exceptional values whenever possible.

For example, 2 + UNDERFLOW returns 2, EXP(-UNDERFLOW) returns 1, 3 / UNDERFLOW returns

OVERFLOW, and ATAN(-OVERFLOW) returns (approximately) −π/2.

Cases where we don’t know the exception category or representable FM number of the result

are returned as UNKNOWN, as with 1/0, SQRT(-2), and LOG(OVERFLOW). OVERFLOW/1.01 returns

UNKNOWN, since the true result might be a representable number or OVERFLOW. But OVERFLOW/0.99

returns OVERFLOW.

Having the UNDERFLOW category means FM results never become zero as a result of underflow.

Here is part of a program comparing FM and IEEE single precision when some intermediate results

are near the underflow threshold. FM has been set to use 24 digits base 2, with the maximum FM

exponent set to give underflow below 2−150, to agree with the IEEE underflow threshold.

Program 3

DO J = 60, 90

X = 1.5

YFM = 1.5

DO K = 1, J

X1 = 3.14159 + (J/900.0 + K/1000.0)

X = X/X1

YFM = YFM/X1

ENDDO

DO K = 1, J

X1 = 3.14159 + (J/900.0 + K/1000.0)

X = X*X1

YFM = YFM*X1

ENDDO

8



CALL FM FORM("F10.7",YFM,ST1)

WRITE (*,"(A,I2,16X,F10.7,4X,A)") " J = ",J,X,TRIM(ST1)

ENDDO

In this program X and X1 are single precision and YFM is TYPE (FM). We start with 1.5 and

divide by J different values, then re-trace our steps by multiplying by those same values. Except

for rounding and underflow effects, we expect to get back to 1.5 at the end. Here is some of the

output:

J = 60 1.4999998 1.4999998

J = 61 1.5000001 1.5000001

...

J = 85 1.5444297 1.5000004

J = 86 1.6308042 1.4999999

J = 87 2.0562468 1.4999998

J = 88 0.0000000 UNKNOWN

J = 89 0.0000000 UNKNOWN

J = 90 0.0000000 UNKNOWN

Early on, both single precision and FM give good approximations to 1.5, but as J increases

some intermediate results come closer to the underflow threshold. In the hardware arithmetic,

accuracy degrades because of gradual underflow. After J = 87, the calculation has encountered

complete underflow and the result is flushed to zero.

In the last column, the FM results show good accuracy through J = 87. After that, there

is underflow, but the result is not flushed to zero. Then when we try to multiply that value by

numbers greater than one, FM gives UNKNOWN.

For this example, the FM exception handling strategy works well. The FM numbers printed

are accurate, and when we have lost track of the calculation due to underflow, the UNKNOWN result

tells us so, instead of giving a potentially dangerous value of zero.

In addition to multiple-precision real numbers, FM provides multiple-precision integers and

complex numbers. These are declared as TYPE (IM) and TYPE (ZM) respectively.

High precision integers are used in cryptography and number theory applications. These often

require large prime numbers. Consider two 70-digit integers.

a = 5468317884572019103692012212053793153845065543480825746529998049913559,

b = a+ 2.

Neither of these numbers has any prime factors less than 10 million, so they might be prime.

9



Fermat’s theorem says xp−1 mod p = 1 when p is prime and x is not a multiple of p. If we find

that xp−1 mod p gives 1 for some p with several different x’s, then it is very likely that p is prime

(but it is not certain until further tests are done).

FM has function POWER MOD(A,B,C) for type IM integers that computes A ** B mod C. We

can quickly find

2a−1 mod a = 3983316610142671176378346400270017428270677522815786292756244952996938

so a is definitely not prime. But several calculations like

2b−1 mod b = 1,

3b−1 mod b = 1,

314159b−1 mod b = 1,

make it quite likely that b is prime.

For an example using complex arithmetic, let us return to the Bessel function and compute

J1(35.3 + 2.8 i). These are the changes made to Program 2 to get a program that uses complex FM

arithmetic.

1. Change “TYPE (FM)” to “TYPE (ZM)”.

2. Change the initialization of X to X = TO ZM(" 35.3 + 2.8 i ")/2

3. Change CALL FM FORM("E25.15",S,ST1) to CALL ZM FORM("E21.15","E21.15",S,ST1)

As before, asking for 30 and then 40 digits gives 15 significant digit agreement in the results:

30 significant digits: K = 70 S = -.767913653991677M-2 - .109761037849060M+1 i

The speed is not too bad for high precision, although it is much slower than the arithmetic that

is built into the hardware. On a typical current desktop computer, if the precision is no more than

40 significant digits, we get around a million add or subtract operations per second, with multiply

and divide 2 or 3 times slower. Elementary functions run at 5,000 or 10,000 calls per second, and

special functions like gamma or binomial coefficients are more like 1,000 calls per second. But each

function has a set of special cases for which the speed is much greater. For example, binomial

coefficients are much faster when both arguments are integers less than 100.

These examples show that with the compiler doing most of the work, translating programs to

use multiple-precision is not hard. There is great flexibility in using the package — we can set the

precision, base, rounding mode, and other parameters that control the arithmetic. There are lots

of problems where doing some high precision computing can turn a tricky calculation into an easy

one, and computer power is now great enough that it is feasible to use multiple-precision for many

of these applications.

10



References

1. Smith, D.M. Efficient Multiple-Precision Evaluation of Elementary Functions. Math. Comp.

52 (January, 1989) 131–134.

2. Smith, D.M. A Fortran Package for Floating-Point Multiple-Precision Arithmetic. ACM

Trans. Math. Softw. 17, (June, 1991), 273–283.

3. Smith, D.M. Multiple Precision Complex Arithmetic and Functions. ACM Trans. Math.

Softw. 24, (December, 1998), 359–367.

4. Smith, D.M. Multiple-Precision Gamma Function and Related Functions. Transactions on

Mathematical Software 27 (December, 2001), 377 – 387.

5. Knuth, D.E. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, third

edition. Addison Wesley, Reading, Mass., 1998.

11


