
! FM 1.3 David M. Smith 10-17-2017

! The routines in this package perform multiple precision arithmetic and functions
! on three kinds of numbers.
! FM routines handle floating-point real multiple precision numbers,
! IM routines handle integer multiple precision numbers, and
! ZM routines handle floating-point complex multiple precision numbers.
! References to FM numbers below mean the low-level array form of the number used by the routines
! in FM.f95, and not the derived type (fm) numbers handled by the FMZM module. Logically, both may
! refer to the same multiple precision number, but the syntax for dealing with the two types of
! objects is different. The same is true of references to IM numbers and ZM numbers below.

! These are the basic routines for the FM package, and the expectation is that the user will not
! call these routines directly. The typical usage is for a program to declare multiple precision
! variables with the three derived types defined in module FMZM in file FMZM90.f95. Then that
! module provides the interface between the user's program and the routines in this file. See the
! documentation in the FM_User_Manual.txt file for advice on using the FMZM module.
! The information below is intended as a technical reference on the inner workings of FM, and most
! FM users should not need to study it.

! 1. INITIALIZING THE PACKAGE

! The variables that contain values to be shared by the different routines are located in module
! FMVALS in file FMSAVE.f95. Variables that are described below for controlling various features
! of the FM package are found in this module. They are initialized to default values assuming
! 32-bit integers and 64-bit double precision representation of the arrays holding multiple
! precision numbers. The base and number of digits to be used are initialized to give slightly
! more than 50 decimal digits. Subroutine FMVARS can be used to get a list of these variables
! and their values.

! The intent of module FMVALS is to hide the FM internal variables from the user's program, so that
! no name conflicts can occur. Subroutine FMSETVAR can be used to change the variables listed
! below to new values. It is not always safe to try to change these variables directly by putting
! USE FMVALS into the calling program and then changing them by hand. Some of the saved constants
! depend upon others, so that changing one variable may cause errors if others depending on that
! one are not also changed. FMSETVAR automatically updates any others that depend upon the one
! being changed.

! Subroutine FMSET also initializes these variables. It tries to compute the best value for each,
! and it checks several of the default values set in FMVALS to see that they are reasonable for a
! given machine. FMSET can also be called to set or change the current precision level for the
! multiple precision numbers.

! Calling FMSET is optional starting in version 1.2 of the FM package. In previous versions one
! call was required before any other routine in the package could be used.

! The routine ZMSET from version 1.1 is no longer needed, and the complex operations are
! automatically initialized in FMVALS. It has been left in the package for compatibility with
! version 1.1.

! 2. REPRESENTATION OF FM NUMBERS

! MBASE is the base in which the arithmetic is done. MBASE must be bigger than one, and less than
! or equal to the square root of the largest representable integer. For best efficiency
! MBASE should be large, but no more than about 1/4 of the square root of the largest
! representable integer. Input and output conversions are much faster when MBASE is a
! power of ten.

! NDIG is the number of base MBASE digits that are carried in the multiple precision numbers.
! NDIG must be at least two. The upper limit for NDIG is restricted only by the amount
! of memory available.

! Sometimes it is useful to dynamically vary NDIG during the program. Routine FMEQU should be used
! to round numbers to lower precision or zero-pad them to higher precision when changing NDIG.

! The default value of MBASE is a large power of ten. FMSET also sets MBASE to a large power of
! ten. For an application where another base is used, such as simulating a given machine's base
! two arithmetic, use subroutine FMSETVAR to change MBASE, so that the other internal values
! depending on MBASE will be changed accordingly.

! There are two representations for a floating point multiple precision number. The unpacked
! representation used by the routines while doing the computations is base MBASE and is stored
! in NDIG+3 words. A packed representation is available to store the numbers in compressed form.
! In this format, the NDIG (base MBASE) digits of the mantissa are packed two per word to conserve
! storage. Thus the external, packed form of a number requires (NDIG+1)/2+3 words.

! This version uses double precision arrays to hold the numbers. Version 1.0 of FM used integer
! arrays, which are faster on some machines. The package can be changed to use integer arrays ---
! see section 10 on EFFICIENCY below.

! The unpacked format of a floating multiple precision number is as follows. A number MA refers
! to elements of an array with the multiple precision number stored as follows:
! 1 Sign of the number
! 2 Accuracy
! 3 Exponent of the number
! 4 First digit of the number
! ...
! NDIG+3 Last digit of the number.

! The accuracy is the approximate number of bits of precision of the number. This precision value
! is intended to be used by FM functions that need to monitor cancellation error in addition and
! subtraction. The cancellation monitor code is usually disabled for user calls, and FM functions
! only check for cancellation when they must. Tracking cancellation causes most routines to run
! slower, with addition and subtraction being affected the most.

! The exponent is a power of MBASE and the implied radix point is immediately before the first
! digit of the mantissa. The exponent is a signed integer. The overflow threshold is
! MBASE**(MXEXP+1), and the underflow threshold is MBASE**(-MXEXP-1). This means the valid
! exponents for an FM number can range from -MXEXP to MXEXP+1 (inclusive).
! Every nonzero number is normalized so that the first digit of the mantissa is nonzero.

! For MBASE = 10,000 and NDIG = 4, if MA is the number -pi, it would have these representations:

! Word 1 2 3 4 5 6 7

! Unpacked: -1 42 1 3 1415 9265 3590
! Packed: -1 42 1 31415 92653590

! The mantissa has about 42 bits of precision, and the number represented is
! (-1)*(10000**1)*(.0003141592653590).

! Because of the normalization of the digits with a large base, the equivalent number of base 10
! significant digits for an FM number may be as small as LOG10(MBASE)*(NDIG-1) + 1. In the -pi
! example above, this is 4*3 + 1 = 13.

! In version 1.2 and before, each variable like MA was a fixed-size array. Now the array values
! for all multiple precision numbers are stored together in one dynamic array, MWK. A variable
! name like MA is just an integer index giving the location within MWK where the digits are put.
! This allows the memory management of the package to be more flexible than before, to handle
! large arrays of multiple precision numbers at low precision (30 to 50 s.d.) as well as some
! at high precision (millions of s.d.).

! The integer routines use the FM format to represent numbers, without the number of digits (NDIG)
! being fixed. Integers in IM format are essentially variable precision, using the minimum number
! of words to represent each value.

! The unpacked format is the default. As machines' memories have gotten bigger, few applications
! need the packed format. A program that uses packed format numbers should not use the FMZM module
! or the multiple precision derived types defined in FMZM. Packed numbers are treated as temporary
! values by the routines in FMZM, so mixing packed numbers with derived type operations from FMZM
! means the packed numbers could be deleted before the main program is finished with them.

! For programs using both FM and IM numbers, FM routines should not be called with IM numbers, and
! IM routines should not be called with FM numbers, since the implied value of NDIG used for an IM
! number may not match the explicit NDIG expected by an FM routine. Use the conversion routines
! IMFM2I and IMI2FM to change between the FM and IM formats.

! The format for complex FM numbers (called ZM numbers below) is very similar to that for real FM
! numbers. Each ZM number consists of two FM numbers representing the real and imaginary parts of
! a complex number. If MA is a ZM number, then the real part is MA(1) and the imaginary part is
! MA(2). As with FM, there are packed and unpacked formats for the numbers.

! 3. INPUT/OUTPUT ROUTINES

! All versions of the input routines perform free-format conversion from characters to FM numbers.

! a. Conversion to or from a character array

! FMINP converts from a character(1) array to an FM number.

! FMOUT converts an FM number to base 10 and formats it for output as an array of type
! character(1). The output is left justified in the array, and the format is defined
! by two variables in module FMVALS, so that a separate format definition does not have
! to be provided for each output call.

! JFORM1 and JFORM2 define a default output format.

! JFORM1 = 0 E format (.314159M+6)
! = 1 ES format (3.14159M+5)
! = 2 F format (314159.000)

! JFORM2 is the number of significant digits to display (if JFORM1 = 0 or 1).

! If JFORM2 = 0 then a default number of digits is chosen. The default is roughly
! the full precision of the number.
! JFORM2 is the number of digits after the decimal point (if JFORM1 = 2).
! See the FMOUT documentation for more details.

! b. Conversion to or from a character string

! FMST2M converts from a character string to an FM number.

! FMFORM converts an FM number to a character string according to a format provided in each
! call. The format description is more like that of a Fortran FORMAT statement, and
! integer or fixed-point output is right justified.

! c. Direct read or write

! FMPRINT uses FMOUT to print one FM number.

! FMFPRINT uses FMFORM to print one FM number.

! FMWRITE writes FM numbers for later input using FMREAD.

! FMREAD reads FM numbers written by FMWRITE.

! The values given to JFORM1 and JFORM2 can be used to define a default output format when FMOUT
! or FMPRINT are called. The explicit format used in a call to FMFORM or FMFPRINT overrides the
! settings of JFORM1 and JFORM2.

! KW is the unit number to be used for standard output from the package, including error and
! warning messages, and trace output.

! For multiple precision integers, the corresponding routines IMINP, IMOUT, IMST2M, IMFORM,
! IMPRINT, IMFPRINT, IMWRITE, and IMREAD provide similar input and output conversions. For output
! of IM numbers, JFORM1 and JFORM2 are ignored and integer format (JFORM1=2, JFORM2=0) is used.

! For ZM numbers, the corresponding routines ZMINP, ZMOUT, ZMST2M, ZMFORM, ZMPRINT, ZMFPRINT,
! ZMWRITE, and ZMREAD provide similar input and output conversions.

! For the output format of ZM numbers, JFORM1 and JFORM2 determine the default format for the
! individual parts of a complex number as with FM numbers.

! JFORMZ determines the combined output format of the real and imaginary parts.

! JFORMZ = 1 normal setting : 1.23 - 4.56 i
! = 2 use capital I : 1.23 - 4.56 I
! = 3 parenthesis format: (1.23 , -4.56)

! JPRNTZ controls whether to print real and imaginary parts on one line whenever possible.

! JPRNTZ = 1 print both parts as a single string :
! 1.23456789M+321 - 9.87654321M-123 i
! = 2 print on separate lines without the 'i' :
! 1.23456789M+321
! -9.87654321M-123

! For further description of these routines, see section 9 below.

! 4. ARITHMETIC TRACING

! NTRACE and LVLTRC control trace printout from the package.

! NTRACE = 0 No output except warnings and errors. (Default)
! = 1 The result of each call to one of the routines is printed in base 10, using FMOUT.
! = -1 The result of each call to one of the routines is printed in internal base MBASE
! format.
! = 2 The input arguments and result of each call to one of the routines is printed in
! base 10, using FMOUT.
! = -2 The input arguments and result of each call to one of the routines is printed in
! base MBASE format.

! LVLTRC defines the call level to which the trace is done. LVLTRC = 1 means only FM routines
! called directly by the user are traced, LVLTRC = 2 also prints traces for FM routines
! called by other FM routines called directly by the user, etc. Default is 1.

! In the above description, internal MBASE format means the number is printed as it appears in the
! array --- the sign, accuracy, exponent, then the NDIG base MBASE digits.

! 5. ERROR CONDITIONS

! KFLAG is a condition value returned by the package after each call to one of the routines.
! Negative values indicate conditions for which a warning message will be printed unless
! KWARN = 0.
! Positive values indicate conditions that may be of interest but are not errors. No warning
! message is printed if KFLAG is nonnegative.

! Subroutine FMFLAG is provided to give the user access to the current condition code. For
! example, to set the user's local variable LFLAG to FM's internal KFLAG value:
! CALL FMFLAG(LFLAG)

! KFLAG = 0 Normal operation.

! = 1 One of the operands in FMADD or FMSUB was insignificant with respect to the
! other. This means that in the default (symmetric) rounding mode the result
! is equal to the argument of larger magnitude. KFLAG = 1 is still returned
! with the other three rounding modes (see KROUND below), but the result may
! not be equal to either input argument.
! = 2 In converting an FM number to a one word integer in FMM2I, the FM number was
! not exactly an integer. The next integer toward zero was returned.

! = -1 NDIG was less than 2.
! = -2 MBASE was less than 2 or more than MXBASE.
! = -3 An exponent was out of range.
! = -4 Invalid input argument(s) to an FM routine. UNKNOWN was returned.
! = -5 + or - OVERFLOW was generated as a result from an FM routine.
! = -6 + or - UNDERFLOW was generated as a result from an FM routine.
! = -7 The input string (array) to FMINP was not legal.
! = -8 The character array was not large enough in an input or output routine.
! = -9 Precision could not be raised enough to provide all requested guard digits.
! This means the program has run out of memory.
! UNKNOWN was returned.
! = -10 An FM input argument was too small in magnitude to convert to the machine's

! single or double precision in FMM2SP or FMM2DP. Check that the definitions
! of SPMAX and DPMAX in file FMSAVE.f95 are correct for the current machine.
! Zero was returned.
! = -11 Array MBERN is not dimensioned large enough for the requested number of
! Bernoulli numbers.
! = -12 Array MJSUMS is not dimensioned large enough for the number of coefficients
! needed in the reflection formula in FMPGAM.

! When a negative KFLAG condition is encountered, the value of KWARN determines the action to
! be taken.

! KWARN = 0 Execution continues and no message is printed.
! = 1 A warning message is printed and execution continues.
! = 2 A warning message is printed and execution stops.

! The default setting is KWARN = 1.

! When an overflow or underflow is generated for an operation in which an input argument was
! already an overflow or underflow, no additional message is printed. When an unknown result
! is generated and an input argument was already unknown, no additional message is printed.
! In these cases the negative KFLAG value is still returned.

! IM routines handle exceptions like OVERFLOW or UNKNOWN in the same way as FM routines, but there
! are some differences because the number of digits carried for IM numbers is not fixed. For
! example, in computing the product of two large integers FM will try to allocate more space rather
! than returning +OVERFLOW. If this allocation fails, FM will write an error message indicating it
! could not get more memory, and the program will stop. The routines IMMPY_MOD and IMPOWER_MOD can
! be used to obtain modular products and powers without as much chance of running out of memory.

! 6. OTHER OPTIONS

! KRAD = 0 All angles in the real trigonometric functions and inverse functions are measured
! in degrees.
! = 1 All angles are measured in radians. (Default)

! KROUND = -1 All results are rounded toward minus infinity.
! = 0 All results are rounded toward zero (chopped).
! = 1 All results are rounded to the nearest FM number, or to the value with an even last
! digit if the result is exactly halfway between two FM numbers. (Default)
! = 2 All results are rounded toward plus infinity.

! KSWIDE defines the maximum screen width to be used for all unit KW output. Default is 80.

! KESWCH controls the action taken in FMINP and other input routines for strings like 'E7' that
! have no digits before the exponent field. This is sometimes a convenient abbreviation
! when doing interactive keyboard input.
! KESWCH = 1 causes 'E7' to translate like '1.0E+7'. (Default)
! KESWCH = 0 causes 'E7' to translate like '0.0E+7' and give 0.

! CMCHAR defines the exponent letter to be used for FM variable output.
! Default is 'M', as in 1.2345M+678.
! Change it to 'E' for output to be read by a non-FM program.

! KDEBUG = 0 No error checking is done to see if input arguments are valid and parameters like
! NDIG and MBASE are correct upon entry to each routine. (Default)

! = 1 Some error checking is done. (Slower speed)

! See module FMVALS in file FMSAVE.f95 for additional description of these and other variables
! defining various FM conditions.

! 7. ARRAY DIMENSIONS

! Before version 1.3 the multiple-precision numbers were each stored in a separate array. Now all
! these arrays have been combined into one, MWK. Each multiple-precision number is represented by
! a single integer that is used to access the number in the MWK array. This makes the memory usage
! within the package much more flexible.

! 8. PORTABILITY

! In FMSET several variables are set to machine-dependent values, and many of the variables
! initialized in module FMVALS in file FMSAVE.f95 are checked to see that they have reasonable
! values. FMSET will print warning messages on unit KW for any of the FMVALS variables that
! seem to be poorly initialized.

! If an FM run fails, call FMVARS to get a list of all the FMVALS variables printed on unit KW.
! Setting KDEBUG = 1 at the start may also identify some errors.

! In the routines for special functions, several constants are used that require the machine's
! integer word size to be at least 32 bits.

! 9. LIST OF ROUTINES

! First are the routines that deal with multiple precision real numbers. All of these are
! subroutines except logical function FMCOMPARE.

! MA, MB, MC refer to FM format numbers (i.e., integers as opposed to the derived types with
! integer components that are defined in file FMZM90.f95)

! In Fortran-90 and later versions of the Fortran standard, it is potentially unsafe to use the
! same variable more than once in the calling sequence. The operation MA = MA + MB should not be
! written as
! CALL FMADD(MA,MB,MA)
! since the code for the subroutine will not know that the first and third arguments are the same,
! and some code optimizations under the assumption that all three arguments are different could
! cause errors.

! One solution is to use a third array and then put the result back in MA:
! CALL FMADD(MA,MB,MC)
! CALL FMEQ(MC,MA)

! When the first call is doing one of the "fast" operations like addition, the extra call to move
! the result back to MA can cause a noticeable loss in efficiency. To avoid this, separate
! routines are provided for the basic arithmetic operations when the result is to be returned in
! the same array as one of the inputs.

! A routine name with a suffix of "_R1" returns the result in the first input array, and a suffix
! of "_R2" returns the result in the second input array. The example above would then be:
! CALL FMADD_R1(MA,MB)

! These routines each have one less argument than the original version, since the output is
! re-directed to one of the inputs. The result array should not be the same as any input array
! when the original version of the routine is used.

! The routines that can be used this way are listed below. For others, like
! CALL FMEXP(MA,MA)
! the relative cost of doing an extra copy is small. This one should become
! CALL FMEXP(MA,MB)
! CALL FMEQ(MB,MA)

! When the derived-type interface is used, as in
! TYPE (FM), SAVE :: A, B
! ...
! A = A + B
! there is no problem putting the result back into A, since the interface routine creates a
! temporary scratch array for the result of A + B.

! For each of these routines there is also a version available for which the argument list is
! the same but all FM numbers are in packed format. The routines using packed numbers have the
! same names except 'FM' is replaced by 'FP' at the start of each name.

! Some of the routine names were restricted to 6 characters in earlier versions of FM. The old
! names have been retained for compatibility, but new names that are longer and more readable
! have been added. For example, the old routine FMCSSN can now also be called as FMCOS_SIN.
! Both old and new names are listed below.

! FMABS(MA,MB) MB = ABS(MA)

! FMACOS(MA,MB) MB = ACOS(MA)

! FMACOSH(MA,MB) MB = ACOSH(MA)

! FMADD(MA,MB,MC) MC = MA + MB

! FMADD_R1(MA,MB) MA = MA + MB

! FMADD_R2(MA,MB) MB = MA + MB

! FMADDI(MA,IVAL) MA = MA + IVAL Increment an FM number by a one word integer.
! Note this call does not have an "MB" result
! like FMDIVI and FMMPYI.

! FMASIN(MA,MB) MB = ASIN(MA)

! FMASINH(MA,MB) MB = ASINH(MA)

! FMATAN(MA,MB) MB = ATAN(MA)

! FMATANH(MA,MB) MB = ATANH(MA)

! FMATAN2(MA,MB,MC) MC = ATAN2(MA,MB) < old name: FMATN2 >

! FMBIG(MA) MA = Biggest FM number less than overflow.

! FMCHANGEBASE(MA,MB,NEW_MBASE,NEW_NDIG)
! MB is returned with the base NEW_MBASE and precision NEW_NDIG
! representation of MA, where MA is given in the current base (MBASE)
! and precision (NDIG). This routine is primarily meant to be used
! for input and output conversion when a base is being used that is
! not a power of ten.

! FMCOMPARE(MA,LREL,MB) Logical comparison of MA and MB. < old name: FMCOMP >
! LREL is a character(2) value identifying which of the six comparisons
! is to be made.
! Example: IF (FMCOMPARE(MA,'>=',MB)) ...
! Also can be: IF (FMCOMPARE(MA,'GE',MB)) ...
! character(1) is ok: IF (FMCOMPARE(MA,'>',MB)) ...

! FMCONS Set several saved constants that depend on MBASE, the base being used.
! FMCONS should be called immediately after changing MBASE.

! FMCOS(MA,MB) MB = COS(MA)

! FMCOS_SIN(MA,MB,MC) MB = COS(MA), MC = SIN(MA). < old name: FMCSSN >
! Faster than making two separate calls.

! FMCOSH(MA,MB) MB = COSH(MA)

! FMCOSH_SINH(MA,MB,MC) MB = COSH(MA), MC = SINH(MA). < old name: FMCHSH >
! Faster than making two separate calls.

! FMDIG(NSTACK,KST) Find a set of precisions to use during Newton iteration for finding a
! simple root starting with about double precision accuracy.

! FMDIM(MA,MB,MC) MC = DIM(MA,MB)

! FMDIV(MA,MB,MC) MC = MA / MB

! FMDIV_R1(MA,MB) MA = MA / MB

! FMDIV_R2(MA,MB) MB = MA / MB

! FMDIVI(MA,IVAL,MB) MB = MA/IVAL IVAL is a one word integer.

! FMDIVI_R1(MA,IVAL) MA = MA/IVAL

! FMDP2M(X,MA) MA = X Convert from double precision to FM.

! FMDPM(X,MA) MA = X Convert from double precision to FM.
! Faster than FMDP2M, but MA agrees with X only to D.P.
! accuracy. See the comments in the two routines.

! FMEQ(MA,MB) MB = MA Both have precision NDIG.
! This is the version to use for standard B = A statements.

! FMEQU(MA,MB,NA,NB) MB = MA Version for changing precision.
! MA has NA digits (i.e., MA was computed using NDIG = NA), and
! MB will be defined having NB digits.
! MB is rounded if NB < NA
! MB is zero-padded if NB > NA

! FMEXP(MA,MB) MB = EXP(MA)

! FMFLAG(K) K = KFLAG get the value of the FM condition flag -- stored in the
! internal FM variable KFLAG in module FMVALS.

! FMFORM(FORM,MA,STRING) MA is converted to a character string using format FORM and returned in
! STRING. FORM can represent I, F, E, or ES formats. Example:
! CALL FMFORM('F60.40',MA,STRING)

! FMFPRINT(FORM,MA) Print MA on unit KW using FORM format. < old name: FMFPRT >

! FMHYPOT(MA,MB,MC) MA = SQRT(MA**2 + MB**2)

! FMI2M(IVAL,MA) MA = IVAL Convert from one word integer to FM.

! FMINP(LINE,MA,LA,LB) MA = LINE Input conversion.
! Convert LINE(LA) through LINE(LB) from characters to FM.

! FMINT(MA,MB) MB = INT(MA) Integer part of MA.

! FMIPOWER(MA,IVAL,MB) MB = MA**IVAL Raise an FM number to a one word integer power.
! < old name: FMIPWR >

! FMLOG10(MA,MB) MB = LOG10(MA) < old name: FMLG10 >

! FMLN(MA,MB) MB = LOG(MA)

! FMLNI(IVAL,MA) MA = LOG(IVAL) Natural log of a one word integer.

! FMM2DP(MA,X) X = MA Convert from FM to double precision.

! FMM2I(MA,IVAL) IVAL = MA Convert from FM to integer.

! FMM2SP(MA,X) X = MA Convert from FM to single precision.

! FMMAX(MA,MB,MC) MC = MAX(MA,MB)

! FMMIN(MA,MB,MC) MC = MIN(MA,MB)

! FMMOD(MA,MB,MC) MC = MA mod MB

! FMMPY(MA,MB,MC) MC = MA * MB

! FMMPY_R1(MA,MB) MA = MA * MB

! FMMPY_R2(MA,MB) MB = MA * MB

! FMMPYI(MA,IVAL,MB) MB = MA*IVAL Multiply by a one word integer.

! FMMPYI_R1(MA,IVAL) MA = MA*IVAL

! FMNINT(MA,MB) MB = NINT(MA) Nearest FM integer.

! FMNORM2(MA,N,MB) MB = SQRT(MA(1)**2 + MA(2)**2 + ... + MA(N)**2)

! FMOUT(MA,LINE,LB) LINE = MA Convert from FM to character.
! LINE is a character array of length LB.

! FMPI(MA) MA = pi

! FMPRINT(MA) Print MA on unit KW using current format. < old name: FMPRNT >

! FMPOWER(MA,MB,MC) MC = MA**MB < old name: FMPWR >

! FM_RANDOM_NUMBER(X) X is returned as a double precision random number, uniformly
! distributed on the open interval (0,1). It is a high-quality,
! long-period generator based on 49-digit prime numbers.
! Note that X is double precision, unlike the similar Fortran intrinsic
! random number routine, which returns a single-precision result.
! A default initial seed is used if FM_RANDOM_NUMBER is called without
! calling FM_RANDOM_SEED_PUT first. See the comments in section 11 below
! and also those in the routine for more details.

! FM_RANDOM_SEED_GET(SEED) returns the seven integers SEED(1) through SEED(7) as the current seed
! for the FM_RANDOM_NUMBER generator.

! FM_RANDOM_SEED_PUT(SEED) initializes the FM_RANDOM_NUMBER generator using the seven integers
! SEED(1) through SEED(7). These get and put functions are slower than
! FM_RANDOM_NUMBER, so FM_RANDOM_NUMBER should be called many times
! between FM_RANDOM_SEED_PUT calls. Also, some generators that used a
! 9-digit modulus have failed randomness tests when used with only a few
! numbers being generated between calls to re-start with a new seed.

! FM_RANDOM_SEED_SIZE(SIZE) returns integer SIZE as the size of the SEED array used by the
! FM_RANDOM_NUMBER generator. Currently, SIZE = 7.

! FMRATIONAL_POWER(MA,K,J,MB)
! MB = MA**(K/J) Rational power. < old name: FMRPWR >
! Faster than FMPOWER for functions like the cube root.

! FMREAD(KREAD,MA) MA is returned after reading one (possibly multi-line) FM number
! on unit KREAD. This routine reads numbers written by FMWRITE.

! FMSET(NPREC) Set the internal FM variables so that the precision is at least NPREC
! base 10 digits plus three base 10 guard digits.

! FMSETVAR(STRING) Define a new value for one of the internal FM variables in module
! FMVALS that controls one of the FM options. STRING has the form
! variable = value.
! Example: To change the screen width for FM output:
! CALL FMSETVAR(' KSWIDE = 120 ')
! The variables that can be changed and the options they control are
! listed in sections 2 through 6 above. Only one variable can be set
! per call. The variable name in STRING must have no embedded blanks.
! The value part of STRING can be in any numerical format, except in
! the case of variable CMCHAR, which is character type. To set CMCHAR
! to 'E', don't use any quotes in STRING:
! CALL FMSETVAR(' CMCHAR = E ')

! FMSIGN(MA,MB,MC) MC = SIGN(MA,MB) Returns the absolute value of MA times the sign
! of MB.

! FMSIN(MA,MB) MB = SIN(MA)

! FMSINH(MA,MB) MB = SINH(MA)

! FMSP2M(X,MA) MA = X Convert from single precision to FM.

! FMSQR(MA,MB) MB = MA * MA Faster than FMMPY.

! FMSQR_R1(MA) MA = MA * MA

! FMSQRT(MA,MB) MB = SQRT(MA)

! FMSQRT_R1(MA) MA = SQRT(MA)

! FMST2M(STRING,MA) MA = STRING
! Convert from character string to FM. STRING may be in any
! numerical format. FMST2M is often more convenient than FMINP,
! which converts an array of character(1) values. Example:
! CALL FMST2M('123.4',MA)

! FMSUB(MA,MB,MC) MC = MA - MB

! FMSUB_R1(MA,MB) MA = MA - MB

! FMSUB_R2(MA,MB) MB = MA - MB

! FMTAN(MA,MB) MB = TAN(MA)

! FMTANH(MA,MB) MB = TANH(MA)

! FMTINY(MA) MA = Smallest positive FM number greater than underflow.

! FMULP(MA,MB) MB = One Unit in the Last Place of MA. For positive MA this is the
! same as the Fortran function SPACING, but MB < 0 if MA < 0.
! Examples: If MBASE = 10 and NDIG = 30, then ulp(1.0) = 1.0E-29,
! ulp(-4.5E+67) = -1.0E+38.

! FMVARS Write the current values of the internal FM variables on unit KW.

! FMWRITE(KWRITE,MA) Write MA on unit KWRITE. < old name: FMWRIT >
! Multi-line numbers will have '&' as the last nonblank character on all
! but the last line. These numbers can then be read easily using FMREAD.

! These are the available mathematical special functions.

! FMBERNOULLI(N,MA) MA = B(N) Nth Bernoulli number

! FMBESJ(N,MA,MB) MB = J(N,MA) Bessel function of the first kind

! FMBESJ2(N1,N2,MA,MB) MB = (/ J(N1,MA) , ..., J(N2,MA) /) returns an array

! FMBESY(N,MA,MB) MB = Y(N,MA) Bessel function of the second kind

! FMBESY2(N1,N2,MA,MB) MB = (/ Y(N1,MA) , ..., Y(N2,MA) /) returns an array

! FMBETA(MA,MB,MC) MC = Beta(MA,MB)

! FMC(MA,MB) MB = C(MA) Fresnel Cosine Integral

! FMCHI(MA,MB) MB = Chi(MA) Hyperbolic Cosine Integral

! FMCI(MA,MB) MB = Ci(MA) Cosine Integral

! FMCOMB(MA,MB,MC) MC = Combination MA choose MB (Binomial coefficient)

! FMEI(MA,MB) MB = Ei(MA) Exponential Integral

! FMEN(N,MA,MB) MB = E(N,MA) Exponential Integral E_n

! FMERF(MA,MB) MB = Erf(MA) Error function

! FMERFC(MA,MB) MB = Erfc(MA) Complimentary Error function

! FMERFC_SCALED(MA,MB) MB = Exp(x**2) * Erfc(MA)

! FMEULER(MA) MA = Euler's constant (0.5772156649...) < old name: FMEULR >

! FMFACT(MA,MB) MB = MA Factorial (Gamma(MA+1))

! FMGAM(MA,MB) MB = Gamma(MA)

! FMIBTA(MX,MA,MB,MC) MC = Incomplete Beta(MX,MA,MB)

! FMIGM1(MA,MB,MC) MC = Incomplete Gamma(MA,MB). Lower case Gamma(a,x)

! FMIGM2(MA,MB,MC) MC = Incomplete Gamma(MA,MB). Upper case Gamma(a,x)

! FMLERC(MA,MB) MB = Ln(Erfc(MA)) Log Erfc

! FMLI(MA,MB) MB = Li(MA) Logarithmic Integral

! FMLNGM(MA,MB) MB = Ln(Gamma(MA))

! FMPGAM(N,MA,MB) MB = Polygamma(N,MA) (Nth derivative of Psi)

! FMPOCH(MA,N,MB) MB = MA*(MA+1)*(MA+2)*...*(MA+N-1) (Pochhammer)

! FMPSI(MA,MB) MB = Psi(MA) (Derivative of Ln(Gamma(MA))

! FMS(MA,MB) MB = S(MA) Fresnel Sine Integral

! FMSHI(MA,MB) MB = Shi(MA) Hyperbolic Sine Integral

! FMSI(MA,MB) MB = Si(MA) Sine Integral

! These are the routines that deal with multiple precision integer numbers.
! All are subroutines except logical function IMCOMPARE. MA, MB, MC refer to IM format numbers.
! In each case the version of the routine to handle packed IM numbers has the same name, with
! 'IM' replaced by 'IP'.

! IMABS(MA,MB) MB = ABS(MA)

! IMADD(MA,MB,MC) MC = MA + MB

! IMBIG(MA) MA = 10**(10**6).
! Larger IM numbers can be obtained, but setting MA to the largest
! possible value would leave no room for any other numbers.

! IMCOMPARE(MA,LREL,MB) Logical comparison of MA and MB. < old name: IMCOMP >
! LREL is a character(2) value identifying which of the six comparisons
! is to be made.
! Example: IF (IMCOMPARE(MA,'GE',MB)) ...
! Also can be: IF (IMCOMPARE(MA,'>=',MB))
! character(1) is ok: IF (IMCOMPARE(MA,'>',MB)) ...

! IMDIM(MA,MB,MC) MC = DIM(MA,MB)

! IMDIV(MA,MB,MC) MC = int(MA/MB)
! Use IMDIVR if the remainder is also needed.

! IMDIVI(MA,IVAL,MB) MB = int(MA/IVAL)
! IVAL is a one word integer. Use IMDVIR to get the remainder also.

! IMDIVR(MA,MB,MC,MD) MC = int(MA/MB), MD = MA mod MB
! When both the quotient and remainder are needed, this routine is
! twice as fast as calling both IMDIV and IMMOD.

! IMDVIR(MA,IVAL,MB,IREM) MB = int(MA/IVAL), IREM = MA mod IVAL
! IVAL and IREM are one word integers.

! IMEQ(MA,MB) MB = MA

! IMFM2I(MAFM,MB) MB = MAFM Convert from real (FM) format to integer (IM) format.

! IMFORM(FORM,MA,STRING) MA is converted to a character string using format FORM and
! returned in STRING. FORM can represent I, F, E, or ES formats.
! Example: CALL IMFORM('I70',MA,STRING)

! IMFPRINT(FORM,MA) Print MA on unit KW using FORM format. < old name: IMFPRT >

! IMGCD(MA,MB,MC) MC = greatest common divisor of MA and MB.

! IMI2FM(MA,MBFM) MBFM = MA Convert from integer (IM) format to real (FM) format.

! IMI2M(IVAL,MA) MA = IVAL Convert from one word integer to IM.

! IMINP(LINE,MA,LA,LB) MA = LINE Input conversion.
! Convert LINE(LA) through LINE(LB) from characters to IM.

! IMM2DP(MA,X) X = MA Convert from IM to double precision.

! IMM2I(MA,IVAL) IVAL = MA Convert from IM to one word integer.

! IMM2SP(MA,X) X = MA Convert from IM to single precision.

! IMMAX(MA,MB,MC) MC = MAX(MA,MB)

! IMMIN(MA,MB,MC) MC = MIN(MA,MB)

! IMMOD(MA,MB,MC) MC = MA mod MB

! IMMPY(MA,MB,MC) MC = MA*MB

! IMMPYI(MA,IVAL,MB) MB = MA*IVAL Multiply by a one word integer.

! IMMPY_MOD(MA,MB,MC,MD) MD = MA*MB mod MC < old name: IMMPYM >
! Slightly faster than calling IMMPY and IMMOD separately.

! IMOUT(MA,LINE,LB) LINE = MA Convert from IM to character.
! LINE is a character array of length LB.

! IMPOWER(MA,MB,MC) MC = MA**MB < old name: IMPWR >

! IMPOWER_MOD(MA,MB,MC,MD) MD = MA**MB mod MC < old name: IMPMOD >

! IMPRINT(MA) Print MA on unit KW. < old name: IMPRNT >

! IMREAD(KREAD,MA) MA is returned after reading one (possibly multi-line)
! IM number on unit KREAD.
! This routine reads numbers written by IMWRITE.

! IMSIGN(MA,MB,MC) MC = SIGN(MA,MB) Returns the absolute value of MA times the
! sign of MB.

! IMSQR(MA,MB) MB = MA*MA Faster than IMMPY.

! IMST2M(STRING,MA) MA = STRING
! Convert from character string to IM.
! IMST2M is often more convenient than IMINP, which converts
! an array of character(1) values. Example:
! CALL IMST2M('12345678901',MA)

! IMSUB(MA,MB,MC) MC = MA - MB

! IMWRITE(KWRITE,MA) Write MA on unit KWRITE.
! Multi-line numbers will have '&' as the last nonblank character on all
! but the last line. These numbers can then be read easily using IMREAD.

! These are the routines that deal with multiple precision complex numbers.
! All are subroutines, and in each case the version of the routine to handle packed ZM numbers has
! the same name, with 'ZM' replaced by 'ZP'.

! MA, MB, MC refer to ZM format complex numbers.
! MAFM, MBFM, MCFM refer to FM format real numbers.
! INTEG is a Fortran INTEGER variable.
! ZVAL is a Fortran COMPLEX variable.

! ZMABS(MA,MBFM) MBFM = ABS(MA) Result is real.

! ZMACOS(MA,MB) MB = ACOS(MA)

! ZMACOSH(MA,MB) MB = ACOSH(MA)

! ZMADD(MA,MB,MC) MC = MA + MB

! ZMADDI(MA,INTEG) MA = MA + INTEG Increment an ZM number by a one word integer.
! Note this call does not have an "MB" result
! like ZMDIVI and ZMMPYI.

! ZMARG(MA,MBFM) MBFM = Argument(MA) Result is real.

! ZMASIN(MA,MB) MB = ASIN(MA)

! ZMASINH(MA,MB) MB = ASINH(MA)

! ZMATAN(MA,MB) MB = ATAN(MA)

! ZMATANH(MA,MB) MB = ATANH(MA)

! ZMCOMPLEX(MAFM,MBFM,MC) MC = CMPLX(MAFM,MBFM) < old name: ZMCMPX >

! ZMCONJUGATE(MA,MB) MB = CONJG(MA) < old name: ZMCONJ >

! ZMCOS(MA,MB) MB = COS(MA)

! ZMCOS_SIN(MA,MB,MC) MB = COS(MA), MC = SIN(MA). < old name: ZMCSSN >
! Faster than 2 calls.

! ZMCOSH(MA,MB) MB = COSH(MA)

! ZMCOSH_SINH(MA,MB,MC) MB = COSH(MA), MC = SINH(MA). < old name: ZMCHSH >
! Faster than 2 calls.

! ZMDIV(MA,MB,MC) MC = MA / MB

! ZMDIVI(MA,INTEG,MB) MB = MA / INTEG

! ZMEQ(MA,MB) MB = MA

! ZMEQU(MA,MB,NDA,NDB) MB = MA Version for changing precision.
! (NDA and NDB are as in FMEQU)

! ZMEXP(MA,MB) MB = EXP(MA)

! ZMFORM(FORM1,FORM2,MA,STRING)
! STRING = MA
! MA is converted to a character string using format FORM1 for the real
! part and FORM2 for the imaginary part. The result is returned in
! STRING. FORM1 and FORM2 can represent I, F, E, or ES formats.
! Example:
! CALL ZMFORM('F20.10','F15.10',MA,STRING)

! ZMFPRINT(FORM1,FORM2,MA) Print MA on unit KW using formats FORM1 and FORM2.
! < old name: ZMFPRT >

! ZMI2M(INTEG,MA) MA = CMPLX(INTEG,0)

! ZM2I2M(INTEG1,INTEG2,MA) MA = CMPLX(INTEG1,INTEG2)

! ZMIMAG(MA,MBFM) MBFM = IMAG(MA) Imaginary part.

! ZMINP(LINE,MA,LA,LB) MA = LINE Input conversion.
! Convert LINE(LA) through LINE(LB) from characters to ZM.
! LINE is a character array of length at least LB.

! ZMINT(MA,MB) MB = INT(MA) Integer part of both Real and Imaginary parts of MA.

! ZMIPOWER(MA,INTEG,MB) MB = MA ** INTEG Integer power function. < old name: ZMIPWR >

! ZMLOG10(MA,MB) MB = LOG10(MA) < old name: ZMLG10 >

! ZMLN(MA,MB) MB = LOG(MA)

! ZMM2I(MA,INTEG) INTEG = INT(REAL(MA))

! ZMM2Z(MA,ZVAL) ZVAL = MA

! ZMMPY(MA,MB,MC) MC = MA * MB

! ZMMPYI(MA,INTEG,MB) MB = MA * INTEG

! ZMNINT(MA,MB) MB = NINT(MA) Nearest integer of both Real and Imaginary.

! ZMOUT(MA,LINE,LB,LAST1,LAST2)
! LINE = MA
! Convert from FM to character.
! LINE is the returned character(1) array.
! LB is the dimensioned size of LINE.
! LAST1 is returned as the position in LINE of the last character
! of REAL(MA)
! LAST2 is returned as the position in LINE of the last character
! of AIMAG(MA)

! ZMPOWER(MA,MB,MC) MC = MA ** MB < old name: ZMPWR >

! ZMPRINT(MA) Print MA on unit KW using current format. < old name: ZMPRNT >

! ZMRATIONAL_POWER(MA,IVAL,JVAL,MB)
! MB = MA ** (IVAL/JVAL) < old name: ZMRPWR >

! ZMREAD(KREAD,MA) MA is returned after reading one (possibly multi-line) ZM number on
! unit KREAD. This routine reads numbers written by ZMWRITE.

! ZMREAL(MA,MBFM) MBFM = REAL(MA) Real part.

! ZMSET(NPREC) Set precision to the equivalent of a few more than NPREC base 10
! digits. This is now the same as FMSET, but is retained for
! compatibility with earlier versions of the package.

! ZMSIN(MA,MB) MB = SIN(MA)

! ZMSINH(MA,MB) MB = SINH(MA)

! ZMSQR(MA,MB) MB = MA*MA Faster than ZMMPY.

! ZMSQRT(MA,MB) MB = SQRT(MA)

! ZMST2M(STRING,MA) MA = STRING
! Convert from character string to ZM. ZMST2M is often more
! convenient than ZMINP, which converts an array of character(1)
! values. Example:
! CALL ZMST2M('123.4+5.67i',MA).

! ZMSUB(MA,MB,MC) MC = MA - MB

! ZMTAN(MA,MB) MB = TAN(MA)

! ZMTANH(MA,MB) MB = TANH(MA)

! ZMWRITE(KWRITE,MA) Write MA on unit KWRITE. Multi-line numbers are formatted for
! automatic reading with ZMREAD. < old name: ZMWRIT >

! ZMZ2M(ZVAL,MA) MA = ZVAL

! 10. EFFICIENCY

! To take advantage of hardware architecture on different machines, the package has been designed
! so that the arithmetic used to perform the multiple precision operations can easily be changed.
! All variables that must be changed to get a different arithmetic have names beginning with 'M'
! and are declared using REAL (KIND(1.0D0)) ...

! For example, to change the package to use integer arithmetic internally, make these two changes
! everywhere in the FM.f95 file.
! Change 'REAL (KIND(1.0D0))' to 'INTEGER'.
! Change 'AINT (' to '('. Note the blank between AINT and (.

! In many places in FM, an AINT function is not supposed to be changed. These are written 'AINT(',
! with no embedded blank, so they will not be changed by the global change above.

! The first of these changes must also be made throughout the file FMSAVE.f95.
! Change 'REAL (KIND(1.0D0))' to 'INTEGER'.

! This version of FM restricts the base used to be also representable in integer variables, so
! using precision above double usually does not save much time unless integers can also be declared
! at a higher precision. Using IEEE Extended would allow a base of around 10**9 to be chosen, but
! the delayed digit-normalization method used for multiplication and division means that a slightly
! smaller base like 10**8 would probably run faster. This would usually not be much faster than
! using the usual base 10**7 with double precision.

! For cases where special compiler directives or minor re-writing of the code may improve speed,
! several of the most important loops in FM are identified by comments containing the string
! '(Inner Loop)'.

! 11. NEW FOR VERSION 1.3

! This is the second edition of version 1.3. The first edition appeared in ACM Transactions on

! Mathematical Software (2-2011). Since then several additions have been made.
! (a) New Fortran-08 functions are available in FMZM
! ACOSH(X), ASINH(X), ATANH(X) for real and complex X
! ATAN(X,Y) can be used in place of ATAN2(X,Y)
! BESSEL_J0(X), BESSEL_J1(X), BESSEL_JN(N,X), BESSEL_JN(N1,N2,X)
! BESSEL_Y0(X), BESSEL_Y1(X), BESSEL_YN(N,X), BESSEL_YN(N1,N2,X)
! The older FM names, BESSEL_J(N,X) and BESSEL_Y(N,X) are still available.
! ERFC_SCALED(X) for exp(x**2) * erfc(x)
! The older FM function LOG_ERFC(X) is also still available for avoiding underflow in erfc.
! HYPOT(X,Y) for sqrt(x**2 + y**2)
! NORM2(A) for sqrt(a(1)**2 + a(2)**2 + ... + a(n)**2)
! This could previously have been done with array operations as SQRT(DOT_PRODUCT(A,A)).
! (b) Many of the elementary and special functions are now faster, after some code-tuning was
! done and a few new methods were added.

! The routines for the exponential integral function and related mathematical special functions
! are new in version 1.3. These routines are:
! FMBESJ, FMBESY, FMC, FMCHI, FMCI, FMEI, FMEN, FMERF, FMERFC, FMLERC, FMLI, FMS, FMSHI, FMSI.

! Some of the routines were moved between files FM.f95 and FMZM90.f95 so that now all routines
! using the module FMZM (in file FMZM90.f95) for multiple precision derived types and operator
! overloading are located in FMZM90.f95. This means that programs not using derived types can
! skip compiling and/or linking FMZM90.f95.

! The array function DOTPRODUCT in FMZM has been re-named DOT_PRODUCT to agree with the Fortran
! standard. For type ZM complex arguments its definition has been changed to agree with the
! Fortran intrinsic function. When X and Y are complex, DOT_PRODUCT(X,Y) is not just the sum of
! the products of the corresponding array elements, as it is for types FM and IM. For type ZM,
! the formula is the sum of conjg(X(j)) * Y(j). This definition is used so that the complex dot
! product will be an inner product in the mathematical sense.

! New routines have been added to module FMZM to provide array syntax for the three multiple
! precision derived types. This means statements like V = 1 and A = B + C now work when these
! variables are vectors or matrices of multiple precision numbers.

! One routine from FM 1.2 has been split into three routines in version 1.3. The routine
! FM_RANDOM_SEED from FM 1.2 has become three subroutines, so that the optional arguments and
! the need for an explicit interface can be avoided. See the three routines starting with
! FM_RANDOM_SEED in the list above. The same multiplicative congruential generator as before
! is used, but the shuffling of those values has been removed, so that saving seeds and
! re-starting the generator now works more like the standard Fortran random function.

! Multiple precision variables were separate fixed-size arrays in previous versions. Now they are
! single integers that serve as index values to a single large array (MWK, defined in file
! FMSAVE.f95) where the actual values are stored. This often improves both efficiency and memory
! utilization, since many compilers implemented the derived type operations using copy in and copy
! out of the arguments for a given operation. Copying entire arrays was slower, and there were
! often memory leaks when the compiler automatically created temporary derived type objects while
! evaluating derived type expressions. The static arrays in previous versions also meant that
! memory was wasted when only a few kinds of operations were used at high precision. Now the
! space needed by any unused operations never gets allocated.

! Some new error checking is now done for the derived type multiple precision variables. Attempting
! to use an undefined variable will cause an error message to be printed.

! Much higher precision can be attained in version 1.3, since machines are faster and have more

! memory. To support higher precision, a routine for FFT-based multiplication has been included,
! and when precision gets high enough, the algorithms for multiplication, division, squares, square
! roots, etc., will switch to the FFT routine.

! Binary splitting algorithms are used for the mathematical constants at high precision. At the
! time version 1.3 was released, computing a million digits of e, pi, or the logarithm of a small
! integer took a few seconds, while a million digits of Euler's constant took a few minutes.

! Perfect rounding is now done all the time. In version 1.2 perfect rounding was an option, but
! the default rounding could round the wrong direction once every few million operations, when the
! exact result was very close to halfway between two adjacent representable numbers.

! --
! --

 SUBROUTINE FMSET(NPREC)

! Initialize the global FM variables that must be set before calling other FM routines.
! These variables are initialized to fairly standard values in the FMSAVE.f95 file (MODULE FMVALS),
! so calling FMSET at the beginning of a program is now optional. FMSET is a convenient way to set
! or change the precision being used, and it also checks to see that the generic values chosen for
! several machine-dependent variables are valid.

! Base and precision will be set to give at least NPREC+3 decimal digits of precision (giving the
! user at least three base ten guard digits). When the base is large, each extra word contains
! several extra digits when viewed in base ten. This means that some choices of NPREC will give
! a few more than three base ten guard digits.

! MBASE (base for FM arithmetic) is set to a large power of ten.
! JFORM1 and JFORM2 (default output format controls) are set to ES format displaying NPREC
! significant digits.

! Several FM options were set here in previous versions of the package, and are now initialized to
! their default values in module FMVALS.
! Here are the initial settings:

! The trace option is set off.
! The mode for angles in trig functions is set to radians.
! The rounding mode is set to symmetric rounding.
! Warning error message level is set to 1.
! Cancellation error monitor is set off.
! Screen width for output is set to 80 columns.
! The exponent character for FM output is set to 'M'.
! Debug error checking is set off.

 USE FMVALS
 IMPLICIT NONE

 INTEGER :: NPREC

 REAL (KIND(1.0D0)) :: MAXINT_CHK,MXEXP2_CHK,MEXPOV_CHK,MEXPUN_CHK,MUNKNO_CHK
 DOUBLE PRECISION :: DPEPS_CHK,DPMAX_CHK,SPMAX_CHK,TEMP
 INTEGER :: INTMAX_CHK,K,NPSAVE
 INTENT (IN) :: NPREC

