FM 1.3 David M. Smith 10-17-2017

The routines in this package perform multiple precision arithmetic and functions

on three kinds of numbers.

FM routines handle floating-point real multiple precision numbers,

IM routines handle integer multiple precision numbers, and

ZM routines handle floating-point complex multiple precision numbers.

References to FM numbers below mean the low-level array form of the number used by the routines
in FM.f95, and not the derived type (fm) numbers handled by the FMZM module. Logically, both may
refer to the same multiple precision number, but the syntax for dealing with the two types of
objects is different. The same is true of references to IM numbers and ZM numbers below.

These are the basic routines for the FM package, and the expectation is that the user will not
call these routines directly. The typical usage is for a program to declare multiple precision
variables with the three derived types defined in module FMZM in file FMZM9@.f95. Then that
module provides the interface between the user's program and the routines in this file. See the
documentation in the FM_User_Manual.txt file for advice on using the FMZM module.

The information below is intended as a technical reference on the inner workings of FM, and most
FM users should not need to study it.

1. INITIALIZING THE PACKAGE

The variables that contain values to be shared by the different routines are located in module
FMVALS in file FMSAVE.f95. Variables that are described below for controlling various features
of the FM package are found in this module. They are initialized to default values assuming
32-bit integers and 64-bit double precision representation of the arrays holding multiple
precision numbers. The base and number of digits to be used are initialized to give slightly
more than 50 decimal digits. Subroutine FMVARS can be used to get a list of these variables
and their values.

The intent of module FMVALS is to hide the FM internal variables from the user's program, so that
no name conflicts can occur. Subroutine FMSETVAR can be used to change the variables listed
below to new values. It is not always safe to try to change these variables directly by putting
USE FMVALS 1into the calling program and then changing them by hand. Some of the saved constants
depend upon others, so that changing one variable may cause errors if others depending on that
one are not also changed. FMSETVAR automatically updates any others that depend upon the one
being changed.

Subroutine FMSET also initializes these variables. It tries to compute the best value for each,
and it checks several of the default values set in FMVALS to see that they are reasonable for a
given machine. FMSET can also be called to set or change the current precision level for the
multiple precision numbers.

Calling FMSET is optional starting in version 1.2 of the FM package. In previous versions one
call was required before any other routine in the package could be used.

The routine ZMSET from version 1.1 is no longer needed, and the complex operations are

automatically initialized in FMVALS. It has been left in the package for compatibility with
version 1.1.

2. REPRESENTATION OF FM NUMBERS

MBASE is the base in which the arithmetic is done. MBASE must be bigger than one, and less than
or equal to the square root of the largest representable integer. For best efficiency
MBASE should be large, but no more than about 1/4 of the square root of the largest
representable integer. Input and output conversions are much faster when MBASE is a
power of ten.

NDIG 1is the number of base MBASE digits that are carried in the multiple precision numbers.
NDIG must be at least two. The upper limit for NDIG is restricted only by the amount
of memory available.

Sometimes it is useful to dynamically vary NDIG during the program. Routine FMEQU should be used
to round numbers to lower precision or zero-pad them to higher precision when changing NDIG.

The default value of MBASE is a large power of ten. FMSET also sets MBASE to a large power of
ten. For an application where another base is used, such as simulating a given machine's base
two arithmetic, use subroutine FMSETVAR to change MBASE, so that the other internal values
depending on MBASE will be changed accordingly.

There are two representations for a floating point multiple precision number. The unpacked
representation used by the routines while doing the computations is base MBASE and is stored

in NDIG+3 words. A packed representation is available to store the numbers in compressed form.
In this format, the NDIG (base MBASE) digits of the mantissa are packed two per word to conserve
storage. Thus the external, packed form of a number requires (NDIG+1)/2+3 words.

This version uses double precision arrays to hold the numbers. Version 1.0 of FM used integer
arrays, which are faster on some machines. The package can be changed to use integer arrays ---
see section 10 on EFFICIENCY below.

The unpacked format of a floating multiple precision number is as follows. A number MA refers
to elements of an array with the multiple precision number stored as follows:

1 Sign of the number

2 Accuracy

3 Exponent of the number

4 First digit of the number

NDIG+3 Last digit of the number.

The accuracy is the approximate number of bits of precision of the number. This precision value
is intended to be used by FM functions that need to monitor cancellation error in addition and
subtraction. The cancellation monitor code is usually disabled for user calls, and FM functions
only check for cancellation when they must. Tracking cancellation causes most routines to run
slower, with addition and subtraction being affected the most.

The exponent is a power of MBASE and the implied radix point is immediately before the first
digit of the mantissa. The exponent is a signed integer. The overflow threshold is
MBASE**(MXEXP+1), and the underflow threshold is MBASE**(-MXEXP-1). This means the valid
exponents for an FM number can range from -MXEXP to MXEXP+1 (inclusive).

Every nonzero number is normalized so that the first digit of the mantissa is nonzero.

For MBASE = 10,000 and NDIG = 4, if MA is the number -pi, it would have these representations:
Word 1 2 3 4 5 6 7

Unpacked: -1 42 1 3 1415 9265 3590
Packed: -1 42 1 31415 92653590

The mantissa has about 42 bits of precision, and the number represented is
(-1)*(10000**1)*(.0003141592653590) .

Because of the normalization of the digits with a large base, the equivalent number of base 10
significant digits for an FM number may be as small as LOGIO(MBASE)*(NDIG-1) + 1. 1In the -pi
example above, this is 4*3 + 1 = 13.

In version 1.2 and before, each variable like MA was a fixed-size array. Now the array values
for all multiple precision numbers are stored together in one dynamic array, MWK. A variable
name like MA is just an integer index giving the location within MWK where the digits are put.
This allows the memory management of the package to be more flexible than before, to handle
large arrays of multiple precision numbers at low precision (30 to 50 s.d.) as well as some

at high precision (millions of s.d.).

The integer routines use the FM format to represent numbers, without the number of digits (NDIG)
being fixed. Integers in IM format are essentially variable precision, using the minimum number
of words to represent each value.

The unpacked format is the default. As machines' memories have gotten bigger, few applications
need the packed format. A program that uses packed format numbers should not use the FMZM module
or the multiple precision derived types defined in FMZM. Packed numbers are treated as temporary
values by the routines in FMZM, so mixing packed numbers with derived type operations from FMZM
means the packed numbers could be deleted before the main program is finished with them.

For programs using both FM and IM numbers, FM routines should not be called with IM numbers, and
IM routines should not be called with FM numbers, since the implied value of NDIG used for an IM
number may not match the explicit NDIG expected by an FM routine. Use the conversion routines
IMFM2I and IMIZ2FM to change between the FM and IM formats.

The format for complex FM numbers (called ZM numbers below) is very similar to that for real FM
numbers. Each ZM number consists of two FM numbers representing the real and imaginary parts of
a complex number. If MA is a ZM number, then the real part is MA(1) and the imaginary part is
MA(2). As with FM, there are packed and unpacked formats for the numbers.
3. INPUT/OUTPUT ROUTINES
A1l versions of the input routines perform free-format conversion from characters to FM numbers.
a. Conversion to or from a character array
FMINP converts from a character(l) array to an FM number.
FMOUT converts an FM number to base 10 and formats it for output as an array of type
character(1). The output is left justified in the array, and the format is defined
by two variables in module FMVALS, so that a separate format definition does not have

to be provided for each output call.

JFORM1 and JFORMZ define a default output format.

JFORM1 = @ E format (.314159M+6)
=1 ES format (3.14159M+5)
=2 F format (314159.000)

JFORM2 is the number of significant digits to display (if JFORM1 = @ or 1).

If JFORM2 = @ then a default number of digits is chosen. The default is roughly
the full precision of the number.

JFORM2 is the number of digits after the decimal point (if JFORM1 = 2).
See the FMOUT documentation for more details.

b. Conversion to or from a character string

FMST2M converts from a character string to an FM number.

FMFORM converts an FM number to a character string according to a format provided in each
call. The format description is more like that of a Fortran FORMAT statement, and
integer or fixed-point output is right justified.

c. Direct read or write

FMPRINT uses FMOUT to print one FM number.

FMFPRINT uses FMFORM to print one FM number.

FMWRITE writes FM numbers for later input using FMREAD.

FMREAD reads FM numbers written by FMWRITE.

The values given to JFORM1 and JFORM2 can be used to define a default output format when FMOUT
or FMPRINT are called. The explicit format used in a call to FMFORM or FMFPRINT overrides the

settings of JFORM1 and JFORMZ2.

KW is the unit number to be used for standard output from the package, including error and
warning messages, and trace output.

For multiple precision integers, the corresponding routines IMINP, IMOUT, IMST2M, IMFORM,
IMPRINT, IMFPRINT, IMWRITE, and IMREAD provide similar input and output conversions. For output
of IM numbers, JFORM1 and JFORMZ are ignored and integer format (JFORM1=2, JFORM2=0) is used.

For ZM numbers, the corresponding routines ZMINP, ZMOUT, ZMST2M, ZMFORM, ZMPRINT, ZMFPRINT,
ZMANRITE, and ZMREAD provide similar input and output conversions.

For the output format of ZM numbers, JFORM1 and JFORMZ determine the default format for the
individual parts of a complex number as with FM numbers.

JFORMZ determines the combined output format of the real and imaginary parts.

JFORMZ = 1 normal setting : 1.23 - 4.56 1
2 use capital I : 1.23 - 4561

3 parenthesis format: (1.23 , -4.56)

JPRNTZ controls whether to print real and imaginary parts on one line whenever possible.

JPRNTZ = 1 print both parts as a single string :
1.23456789M+321 - 9.87654321M-123 i

2 print on separate lines without the 'i'
1.23456789M+321

-9.87654321M-123

For further description of these routines, see section 9 below.

! 4. ARITHMETIC TRACING
! NTRACE and LVLTRC control trace printout from the package.

NTRACE

Il
S

No output except warnings and errors. (Default)

= 1 The result of each call to one of the routines is printed in base 1@, using FMOUT.

= -1 The result of each call to one of the routines is printed in internal base MBASE
format.

= 2 The input arguments and result of each call to one of the routines is printed in
base 10, using FMOUT.

= -2 The input arguments and result of each call to one of the routines is printed in

base MBASE format.

! LVLTRC defines the call level to which the trace is done. LVLTRC = 1 means only FM routines
! called directly by the user are traced, LVLTRC = 2 also prints traces for FM routines
! called by other FM routines called directly by the user, etc. Default is 1.

! In the above description, internal MBASE format means the number is printed as it appears in the
! array --- the sign, accuracy, exponent, then the NDIG base MBASE digits.

! 5. ERROR CONDITIONS

KFLAG is a condition value returned by the package after each call to one of the routines.
Negative values indicate conditions for which a warning message will be printed unless
KWARN = 0.
Positive values indicate conditions that may be of interest but are not errors. No warning
message is printed if KFLAG is nonnegative.

! Subroutine FMFLAG is provided to give the user access to the current condition code. For
! example, to set the user's local variable LFLAG to FM's internal KFLAG value:
! CALL FMFLAG(CLFLAG)

! KFLAG 0 Normal operation.

= 1 One of the operands in FMADD or FMSUB was insignificant with respect to the
other. This means that in the default (symmetric) rounding mode the result
is equal to the argument of larger magnitude. KFLAG = 1 is still returned
with the other three rounding modes (see KROUND below), but the result may
not be equal to either input argument.

= 2 In converting an FM number to a one word integer in FMM2I, the FM number was
not exactly an integer. The next integer toward zero was returned.

= -1 NDIG was less than 2.
= -2 MBASE was less than 2 or more than MXBASE.
= -3 An exponent was out of range.

= -4 Invalid input argument(s) to an FM routine. UNKNOWN was returned.

= -5 + or - OVERFLOW was generated as a result from an FM routine.

= -6 + or - UNDERFLOW was generated as a result from an FM routine.

= -7 The input string (array) to FMINP was not legal.

= -8 The character array was not large enough in an input or output routine.

= -9 Precision could not be raised enough to provide all requested guard digits.
This means the program has run out of memory.
UNKNOWN was returned.

= -10 An FM input argument was too small in magnitude to convert to the machine's

single or double precision in FMM2SP or FMM2DP. Check that the definitions
of SPMAX and DPMAX in file FMSAVE.f95 are correct for the current machine.
Zero was returned.

= -11 Array MBERN is not dimensioned large enough for the requested number of
Bernoulli numbers.
= -12 Array MJSUMS is not dimensioned large enough for the number of coefficients

needed in the reflection formula in FMPGAM.

When a negative KFLAG condition is encountered, the value of KWARN determines the action to
be taken.

KWARN = 0 Execution continues and no message is printed.
=1 A warning message is printed and execution continues.
=2 A warning message is printed and execution stops.

The default setting is KWARN = 1.

When an overflow or underflow is generated for an operation in which an input argument was
already an overflow or underflow, no additional message is printed. When an unknown result
is generated and an input argument was already unknown, no additional message is printed.
In these cases the negative KFLAG value is still returned.

IM routines handle exceptions like OVERFLOW or UNKNOWN in the same way as FM routines, but there
are some differences because the number of digits carried for IM numbers is not fixed. For
example, in computing the product of two large integers FM will try to allocate more space rather
than returning +OVERFLOW. If this allocation fails, FM will write an error message indicating it
could not get more memory, and the program will stop. The routines IMMPY_MOD and IMPOWER_MOD can
be used to obtain modular products and powers without as much chance of running out of memory.

6. OTHER OPTIONS

KRAD = 0 All angles in the real trigonometric functions and inverse functions are measured
in degrees.
=1 All angles are measured in radians. (Default)

KROUND = -1 All results are rounded toward minus infinity.
= 0@ All results are rounded toward zero (chopped).
= 1 All results are rounded to the nearest FM number, or to the value with an even last
digit if the result is exactly halfway between two FM numbers. (Default)
= 2 All results are rounded toward plus infinity.

KSWIDE defines the maximum screen width to be used for all unit KW output. Default is 80.

KESWCH controls the action taken in FMINP and other input routines for strings like 'E7' that
have no digits before the exponent field. This is sometimes a convenient abbreviation
when doing interactive keyboard input.

KESWCH = 1 causes 'E7' to translate like '"1.0E+7'. (Default)
KESWCH = @ causes 'E7' to translate like '@.QE+7' and give 0.

CMCHAR defines the exponent letter to be used for FM variable output.
Default is 'M', as in 1.2345M+678.
Change it to 'E' for output to be read by a non-FM program.

KDEBUG = @ No error checking is done to see if input arguments are valid and parameters like
NDIG and MBASE are correct upon entry to each routine. (Default)

=1 Some error checking is done. (Slower speed)

See module FMVALS in file FMSAVE.f95 for additional description of these and other variables
defining various FM conditions.

7. ARRAY DIMENSIONS

Before version 1.3 the multiple-precision numbers were each stored in a separate array. Now all
these arrays have been combined into one, MWK. Each multiple-precision number is represented by
a single integer that is used to access the number in the MWK array. This makes the memory usage
within the package much more flexible.

8. PORTABILITY

In FMSET several variables are set to machine-dependent values, and many of the variables
initialized in module FMVALS in file FMSAVE.f95 are checked to see that they have reasonable
values. FMSET will print warning messages on unit KW for any of the FMVALS variables that
seem to be poorly initialized.

If an FM run fails, call FMVARS to get a list of all the FMVALS variables printed on unit KW.
Setting KDEBUG = 1 at the start may also identify some errors.

In the routines for special functions, several constants are used that require the machine's
integer word size to be at least 32 bits.

9. LIST OF ROUTINES

First are the routines that deal with multiple precision real numbers. All of these are
subroutines except logical function FMCOMPARE.

MA, MB, MC refer to FM format numbers (i.e., integers as opposed to the derived types with
integer components that are defined in file FMZM90.f95)

In Fortran-90 and later versions of the Fortran standard, it is potentially unsafe to use the
same variable more than once in the calling sequence. The operation MA = MA + MB should not be
written as

CALL FMADD(MA,MB,MA)
since the code for the subroutine will not know that the first and third arguments are the same,
and some code optimizations under the assumption that all three arguments are different could
cause errors.

One solution is to use a third array and then put the result back in MA:
CALL FMADD(MA ,MB,MC)
CALL FMEQ(MC,MA)

When the first call is doing one of the "fast" operations like addition, the extra call to move
the result back to MA can cause a noticeable loss in efficiency. To avoid this, separate
routines are provided for the basic arithmetic operations when the result is to be returned in
the same array as one of the inputs.

A routine name with a suffix of "_R1" returns the result in the first input array, and a suffix
of "_R2" returns the result in the second input array. The example above would then be:
CALL FMADD_R1(MA,MB)

These routines each have one less argument than the original version, since the output is
re-directed to one of the inputs. The result array should not be the same as any input array
when the original version of the routine is used.

The routines that can be used this way are listed below. For others, like
CALL FMEXP(MA,MA)

the relative cost of doing an extra copy is small. This one should become
CALL FMEXP(MA,MB)
CALL FMEQ(MB,MA)

When the derived-type interface is used, as 1in
TYPE (FM), SAVE :: A, B

A=A+B
there is no problem putting the result back into A, since the interface routine creates a
temporary scratch array for the result of A + B.

For each of these routines there is also a version available for which the argument list is
the same but all FM numbers are in packed format. The routines using packed numbers have the
same names except 'FM' is replaced by 'FP' at the start of each name.

Some of the routine names were restricted to 6 characters in earlier versions of FM. The old
names have been retained for compatibility, but new names that are longer and more readable
have been added. For example, the old routine FMCSSN can now also be called as FMCOS_SIN.
Both old and new names are listed below.

FMABS(MA,MB) MB = ABS(MA)

FMACOS(MA,MB) MB = ACOS(MA)

FMACOSH(MA ,MB) MB = ACOSH(MA)

FMADD(MA ,MB ,MC) MC = MA + MB

FMADD_R1(MA,MB) MA = MA + MB

FMADD_R2(MA,MB) MB = MA + MB

FMADDI(MA,IVAL) MA = MA + IVAL Increment an FM number by a one word integer.
Note this call does not have an "MB" result
like FMDIVI and FMMPYI.

FMASIN(MA,MB) MB = ASIN(MA)

FMASINH(MA ,MB) MB = ASINH(MA)

FMATAN(MA ,MB) MB = ATAN(MA)

FMATANH(MA ,MB) MB = ATANH(MA)

FMATAN2(MA,MB ,MC) MC = ATAN2(MA,MB) < old name: FMATNZ >

FMBIG(MA) MA = Biggest FM number less than overflow.

FMCHANGEBASE (MA ,MB ,NEW_MBASE ,NEW_NDIG)

FMCOMPARE(MA, LREL ,MB)

FMCONS

FMCOS(MA, MB)

FMCOS_SINCMA,MB,MC)

FMCOSH(MA ,MB)

FMCOSH_SINH(MA ,MB,MC)

FMDIG(NSTACK,KST)

FMDIM(MA , MB ,MC)
FMDIV(MA,MB ,MC)
FMDIV_R1(MA,MB)
FMDIV_R2(MA,MB)
FMDIVI(MA, IVAL,MB)
FMDIVI_R1(MA,IVAL)
FMDP2M(X , MA)

FMDPM(X,MA)

FMEQ(MA,MB)

FMEQU(MA,MB,NA,NB)

MB is returned with the base NEW_MBASE and precision NEW_NDIG
representation of MA, where MA is given in the current base (MBASE)
and precision (NDIG). This routine is primarily meant to be used
for input and output conversion when a base is being used that is
not a power of ten.

Logical comparison of MA and MB. < old name: FMCOMP >

LREL is a character(2) value identifying which of the six comparisons
is to be made.

Example: IF (FMCOMPARE(MA,'s=',MB)) ...

Also can be: IF (FMCOMPARE(MA,'GE',MB)) ...

character(l) is ok: IF (FMCOMPARE(MA,'>' ,MB)) ...

Set several saved constants that depend on MBASE, the base being used.
FMCONS should be called immediately after changing MBASE.

MB = COS(MA)

MB = COS(MA), MC = SIN(MA). < old name: FMCSSN >
Faster than making two separate calls.

MB = COSH(MA)

MB = COSH(MA), MC = SINH(MA). < old name: FMCHSH >

Faster than making two separate calls.

Find a set of precisions to use during Newton iteration for finding a
simple root starting with about double precision accuracy.

MC = DIM(MA,MB)

MC = MA / MB
MA = MA / MB
MB = MA / MB

MB = MA/IVAL IVAL is a one word integer.
MA = MA/IVAL

MA

1
>

Convert from double precision to FM.

MA

Il
>

Convert from double precision to FM.
Faster than FMDP2M, but MA agrees with X only to D.P.
accuracy. See the comments in the two routines.

MB = MA Both have precision NDIG.
This is the version to use for standard B = A statements.

MB = MA Version for changing precision.
MA has NA digits (i.e., MA was computed using NDIG = NA), and
MB will be defined having NB digits.
MB is rounded if NB < NA
MB is zero-padded if NB > NA

FMEXP(MA,MB) MB = EXP(MA)

FMFLAGCK) K = KFLAG get the value of the FM condition flag -- stored in the
internal FM variable KFLAG in module FMVALS.

FMFORM(FORM,MA, STRING) MA is converted to a character string using format FORM and returned in
STRING. FORM can represent I, F, E, or ES formats. Example:
CALL FMFORM('F60.40' ,MA,STRING)

FMFPRINT(FORM,MA) Print MA on unit KW using FORM format. < old name: FMFPRT >
FMHYPOT (MA ,MB ,MC) MA = SQRT(MA**2 + MB**2)

FMI2M(IVAL,MA) MA = IVAL Convert from one word integer to FM.
FMINPCLINE,MA,LA,LB) MA = LINE Input conversion.

Convert LINECLA) through LINECLB) from characters to FM.
FMINT(MA,MB) MB = INT(MA) Integer part of MA.

FMIPOWER(MA,IVAL ,MB) MB = MA**IVAL Raise an FM number to a one word integer power.
< old name: FMIPWR >

FMLOG1O(MA,MB) MB = LOG1O(MA) < old name: FMLG10 >
FMLN(MA,MB) MB = LOG(MA)

FMLNICIVAL,MA) MA = LOGCIVAL) Natural log of a one word integer.
FMM2DP(MA, X) X = MA Convert from FM to double precision.
FMM2I(MA, IVAL) IVAL = MA Convert from FM to integer.
FMM2SP(MA, XD X = MA Convert from FM to single precision.
FMMAX(MA ,MB ,MC) MC = MAX(MA,MB)

FMMINCMA,MB,MC) MC = MIN(MA,MB)

FMMOD(MA ,MB ,MC) MC = MA mod MB

FMMPY (MA ,MB ,MC) MC = MA * MB

FMMPY_R1(MA,MB) MA = MA * MB

FMMPY_R2(MA,MB) MB = MA * MB

FMMPYI(MA,IVAL,MB) MB = MA*IVAL Multiply by a one word integer.
FMMPYI_R1(MA,IVAL) MA = MA*IVAL

FMNINT(MA,MB) MB = NINT(MA) Nearest FM integer.

FMNORMZ (MA,N,MB) MB = SQRTC MACL)**2 + MAC2)**2 + ... + MACND**2)

FMOUT(MA, LINE,LB)

FMPI(MA)
FMPRINT(MA)
FMPOWER(MA ,MB ,MC)

FM_RANDOM_NUMBER(X)

FM_RANDOM_SEED_GET(SEED)

FM_RANDOM_SEED_PUT(SEED)

FM_RANDOM_SEED_SIZE(SIZE)

LINE = MA Convert from FM to character.
LINE is a character array of length LB.

MA = pi
Print MA on unit KW using current format. < old name: FMPRNT >
MC = MA**MB < old name: FMPWR >

X is returned as a double precision random number, uniformly
distributed on the open interval (0,1). It is a high-quality,
long-period generator based on 49-digit prime numbers.

Note that X is double precision, unlike the similar Fortran intrinsic
random number routine, which returns a single-precision result.

A default initial seed is used if FM_RANDOM_NUMBER 1is called without
calling FM_RANDOM_SEED_PUT first. See the comments in section 11 below
and also those in the routine for more details.

returns the seven integers SEED(1) through SEED(7) as the current seed
for the FM_RANDOM_NUMBER generator.

initializes the FM_RANDOM_NUMBER generator using the seven integers
SEED(1) through SEED(7). These get and put functions are slower than
FM_RANDOM_NUMBER, so FM_RANDOM_NUMBER should be called many times
between FM_RANDOM_SEED_PUT calls. Also, some generators that used a
9-digit modulus have failed randomness tests when used with only a few
numbers being generated between calls to re-start with a new seed.

returns integer SIZE as the size of the SEED array used by the
FM_RANDOM_NUMBER generator. Currently, SIZE = 7.

FMRATIONAL_POWER(MA,K, J,MB)

FMREAD(KREAD ,MA)

FMSET(NPREC)

FMSETVAR(STRING)

FMSIGN(MA,MB ,MC)

MB = MA**(K/J) Rational power. < old name: FMRPWR >
Faster than FMPOWER for functions like the cube root.

MA is returned after reading one (possibly multi-1line) FM number
on unit KREAD. This routine reads numbers written by FMWRITE.

Set the internal FM variables so that the precision is at least NPREC
base 10 digits plus three base 10 guard digits.

Define a new value for one of the internal FM variables in module
FMVALS that controls one of the FM options. STRING has the form

variable = value.
Example: To change the screen width for FM output:

CALL FMSETVAR(' KSWIDE = 120 ')
The variables that can be changed and the options they control are
listed in sections 2 through 6 above. Only one variable can be set
per call. The variable name in STRING must have no embedded blanks.
The value part of STRING can be in any numerical format, except in
the case of variable CMCHAR, which is character type. To set CMCHAR
to 'E', don't use any quotes in STRING:

CALL FMSETVAR(' CMCHAR = E ")

MC = SIGN(MA,MB) Returns the absolute value of MA times the sign
of MB.

FMSINCMA,MB) MB = SINCMA)

FMSINH(MA,MB) MB = SINH(MA)

FMSP2M(X,MA) MA = X Convert from single precision to FM.
FMSQR(MA,MB) MB = MA * MA Faster than FMMPY.
FMSQR_R1(MA) MA = MA * MA

FMSQRT(MA,MB) MB = SQRT(MA)

FMSQRT_R1(MA) MA = SQRT(MA)

FMST2M(STRING,MA) MA = STRING

Convert from character string to FM. STRING may be in any
numerical format. FMST2M is often more convenient than FMINP,
which converts an array of character(l) values. Example:

CALL FMST2M('123.4',MA)

FMSUB(MA,MB ,MC) MC = MA - MB

FMSUB_R1(MA,MB) MA = MA - MB

FMSUB_R2(MA,MB) MB = MA - MB

FMTAN(MA, MB) MB = TAN(MA)

FMTANH(MA ;MB) MB = TANH(MA)

FMTINY(MA) MA = Smallest positive FM number greater than underflow.
FMULP(MA,MB) MB = One Unit in the Last Place of MA. For positive MA this is the

same as the Fortran function SPACING, but MB < @ if MA < 0.
Examples: If MBASE = 10 and NDIG = 30, then ulp(1.0) = 1.0E-29,
ulp(-4.5E+67) = -1.0E+38.

FMVARS Write the current values of the internal FM variables on unit KW.
FMWRITECKWRITE,MA) Write MA on unit KWRITE. < old name: FMAWRIT >

Multi-line numbers will have '&' as the last nonblank character on all
but the last line. These numbers can then be read easily using FMREAD.

These are the available mathematical special functions.

FMBERNOULLICN,MA) MA = B(N) Nth Bernoulli number

FMBESJ(N,MA,MB) MB = J(N,MA) Bessel function of the first kind
FMBESJ2(N1,N2,MA MB) MB = (/ J(N1,MA) , ..., J(N2,MA) /) returns an array
FMBESY(N,MA,MB) MB = Y(N,MA) Bessel function of the second kind
FMBESY2(N1,N2,MA ;MB) MB = (/ Y(N1,MA) , ..., Y(N2,MA) /) returns an array

FMBETA(MA,MB ,MC) MC = Beta(MA,MB)

FMC(MA,MB) MB = C(MA) Fresnel Cosine Integral

FMCHI(MA,MB) MB = Chi(MA) Hyperbolic Cosine Integral
FMCI(MA,MB) MB = Ci(MA) Cosine Integral

FMCOMB(MA,MB ,MC) MC = Combination MA choose MB (Binomial coefficient)
FMEI(MA,MB) MB = Ei(MA) Exponential Integral

FMEN(N,MA ,MB) MB = E(N,MA) Exponential Integral E_n

FMERF(MA,MB) MB = Erf(MA) Error function

FMERFC(MA,MB) MB = Erfc(MA) Complimentary Error function
FMERFC_SCALED(MA,MB) MB = Exp(x**2) * Erfc(MA)

FMEULER(MA) MA = Euler's constant (©0.5772156649...) < old name: FMEULR >
FMFACT(MA,MB) MB = MA Factorial (Gamma(MA+1))

FMGAM(MA ,MB) MB = Gamma(MA)

FMIBTACMX,MA ,MB,MC) MC = Incomplete Beta(MX,MA,MB)

FMIGM1(MA,MB,MC) MC = Incomplete Gamma(MA,MB). Lower case Gamma(a,x)
FMIGM2(MA,MB,MC) MC = Incomplete Gamma(MA,MB). Upper case Gamma(a,x)
FMLERC(MA,MB) MB = Ln(Erfc(MA)) Log Erfc

FMLI(MA,MB) MB = Li(MA) Logarithmic Integral

FMLNGM(MA ;MB) MB = Ln(Gamma(MA))

FMPGAM(N,MA ,MB) MB = Polygamma(N,MA) (Nth derivative of Psi)
FMPOCH(MA ,N,MB) MB = MA*(MA+1)*(MA+2)*...*(MA+N-1) (Pochhammer)
FMPSI(MA,MB) MB = Psi(MA) (Derivative of Ln(Gamma(MA))

FMS(MA ;MB) MB = S(MA) Fresnel Sine Integral

FMSHI(MA,MB) MB = Shi(MA) Hyperbolic Sine Integral

FMSI(MA,MB) MB = Si(MA) Sine Integral

These are the routines that deal with multiple precision integer numbers.

All are subroutines except logical function IMCOMPARE. MA, MB, MC refer to IM format numbers.
In each case the version of the routine to handle packed IM numbers has the same name, with
'IM" replaced by "IP'.

IMABS(MA,MB) MB = ABS(MA)
IMADD(MA,MB ,MC) MC = MA + MB
IMBIG(MA) MA = 10**(10**6).
Larger IM numbers can be obtained, but setting MA to the largest
possible value would leave no room for any other numbers.
IMCOMPARE(MA, LREL ,MB) Logical comparison of MA and MB. < old name: IMCOMP >

LREL is a character(2) value identifying which of the six comparisons
is to be made.

Example: IF (IMCOMPARE(CMA,'GE',MB)) ...

Also can be: IF (IMCOMPARE(MA,'>=',MB))

character(1) is ok: IF (IMCOMPARE(MA,'s',MB)) ...

IMDIM(MA,MB ,MC) MC = DIM(MA,MB)

IMDIV(MA,MB,MC) MC = int(MA/MB)
Use IMDIVR if the remainder is also needed.

IMDIVI(MA,IVAL,MB) MB = int(MA/IVAL)
IVAL is a one word integer. Use IMDVIR to get the remainder also.

IMDIVR(MA,MB,MC,MD) MC = int(MA/MB), MD = MA mod MB
When both the quotient and remainder are needed, this routine is
twice as fast as calling both IMDIV and IMMOD.

IMDVIR(MA,IVAL,MB,IREM) MB = int(MA/IVAL), IREM = MA mod IVAL
IVAL and IREM are one word integers.

IMEQ(MA ,MB) MB = MA
IMFM2I(MAFM,MB) MB = MAFM Convert from real (FM) format to integer (IM) format.
IMFORM(CFORM,MA, STRING) MA is converted to a character string using format FORM and

returned in STRING. FORM can represent I, F, E, or ES formats.
Example: CALL IMFORM('I7Q',MA,STRING)

IMFPRINT(FORM,MA) Print MA on unit KW using FORM format. < old name: IMFPRT >
IMGCD(MA ,MB ,MC) MC = greatest common divisor of MA and MB.
IMI2FM(MA,MBFM) MBFM = MA Convert from integer (IM) format to real (FM) format.
IMIZM(CIVAL,MA) MA = IVAL Convert from one word integer to IM.
IMINPCLINE,MA,LA,LB) MA = LINE Input conversion.

Convert LINECLA) through LINE(LB) from characters to IM.
IMM2DP(MA, XD X = MA Convert from IM to double precision.
IMM2I(MA,IVAL) IVAL = MA Convert from IM to one word integer.

IMM2SP(MA, X) X = MA Convert from IM to single precision.

IMMAX(MA ,MB,MC) MC = MAX(MA,MB)
IMMIN(MA,MB,MC) MC = MIN(MA,MB)
IMMOD(MA,MB ,MC) MC = MA mod MB
IMMPY(MA,MB,MC) MC = MA*MB
IMMPYI(MA, IVAL,MB) MB = MA*IVAL Multiply by a one word integer.
IMMPY_MOD(MA,MB,MC,MD) MD = MA*MB mod MC < old name: IMMPYM >

Slightly faster than calling IMMPY and IMMOD separately.
IMOUT(MA,LINE,LB) LINE = MA Convert from IM to character.

LINE is a character array of length LB.

IMPOWER(MA,MB ,MC) MC = MA**MB < old name: IMPWR >
IMPOWER_MOD(MA,MB ,MC,MD) MD = MA**MB mod MC < old name: IMPMOD >
IMPRINT(MA) Print MA on unit KW. < old name: IMPRNT >
IMREAD(KREAD,MA) MA is returned after reading one (possibly multi-line)

IM number on unit KREAD.

This routine reads numbers written by IMWRITE.
IMSIGN(MA,MB,MC) MC = SIGN(MA,MB) Returns the absolute value of MA times the

sign of MB.

IMSQR(MA,MB) MB = MA*MA Faster than IMMPY.
IMST2M(STRING,MA) MA = STRING

Convert from character string to IM.

IMST2M 1is often more convenient than IMINP, which converts

an array of character(l) values. Example:

CALL IMST2M('12345678901' ,MA)

IMSUB(MA,MB,MC) MC = MA - MB

IMWRITECKWRITE,MA)

Write MA on unit KWRITE.

Multi-line numbers will have '&' as the last nonblank character on all
but the last line. These numbers can then be read easily using IMREAD.

These are the routines that deal with multiple precision complex numbers.
All are subroutines, and in each case the version of the routine to handle packed ZM numbers has
the same name, with 'ZM' replaced by 'ZP'.

MA, MB, MC refer to ZM format complex numbers.

MAFM, MBFM, MCFM refer to FM format real numbers.

INTEG is a Fortran INTEGER variable.

ZVAL is a Fortran COMPLEX variable.

ZMABS(MA ;MBFM) MBFM = ABS(MA) Result is redal.

ZMACOS(MA ,MB) MB = ACOS(MA)

ZMACOSH(MA ,MB) MB = ACOSH(MA)

ZMADD(MA ;MB ,MC) MC = MA + MB

ZMADDI(MA, INTEG) MA = MA + INTEG Increment an ZM number by a one word integer.
Note this call does not have an "MB" result
like ZMDIVI and ZMMPYTI.

ZMARG(MA ;MBFM) MBFM = Argument(MA) Result is real.

ZMASIN(MA,MB) MB = ASIN(MA)

ZMASINH(MA ,MB) MB = ASINH(MA)

ZMATAN(MA ,MB) MB = ATAN(MA)

ZMATANH(MA ;MB) MB = ATANH(MA)

ZMCOMPLEX(MAFM,MBFM,MC) MC = CMPLX(MAFM,MBFM) < old name: ZMCMPX >

ZMCONJUGATE(MA ,MB) MB = CONJG(MA) < old name: ZMCONJ >

ZMCOS(MA ,MB) MB = COS(MA)

ZMCOS_SIN(MA MB,MC) MB = COSC(MA), MC = SIN(MA). < old name: ZMCSSN >

Faster than 2 calls.
ZMCOSH(MA ,MB) MB = COSH(MA)

ZMCOSH_SINH(MA,MB,MC) MB = COSH(MA), MC = SINH(MA). < old name: ZMCHSH >
Faster than 2 calls.

ZMDIV(MA,MB,MC) MC = MA / MB

ZMDIVI(MA,INTEG,MB) MB = MA / INTEG

ZMEQ(MA,MB) MB = MA

ZMEQU(MA ,MB,NDA,NDB) MB = MA Version for changing precision.

(NDA and NDB are as in FMEQU)
ZMEXP(MA,MB) MB = EXP(MA)

ZMFORM(FORM1, FORM2 ,MA, STRING)
STRING = MA
MA is converted to a character string using format FORM1 for the real
part and FORM2 for the imaginary part. The result is returned in
STRING. FORM1 and FORM2 can represent I, F, E, or ES formats.
Example:
CALL ZMFORM('F20.10','F15.10" ,MA,STRING)

ZMFPRINT(CFORM1,FORMZ2 ,MA) Print MA on unit KW using formats FORM1 and FORMZ2.
< old name: ZMFPRT >

ZMIZ2M(INTEG,MA) MA = CMPLX(INTEG,@)

ZM2I2M(INTEG1,INTEG2,MA) MA = CMPLX(INTEG1,INTEG2)
ZMIMAG(MA ,MBFM) MBFM = IMAG(MA) Imaginary part.
ZMINP(LINE,MA,LA,LB) MA = LINE Input conversion.

Convert LINECLA) through LINECLB) from characters to ZM.
LINE is a character array of length at least LB.

ZMINT(MA,MB) MB = INT(MA) Integer part of both Real and Imaginary parts of MA.
ZMIPOWER(MA, INTEG,MB) MB = MA ** INTEG Integer power function. < old name: ZMIPWR >
ZMLOG10(MA ,MB) MB = LOG1O(MA) < old name: ZMLG10 >

ZMLN(MA,MB) MB = LOG(MA)

ZMM2I(MA,INTEG) INTEG = INTCREAL(MA))

ZMM2Z(MA [ZVAL) ZVAL = MA

ZMMPY (MA ;MB ,MC) MC = MA * MB

ZMMPYI(MA,INTEG,MB) MB = MA * INTEG

ZMNINT(MA,MB) MB = NINT(MA) Nearest integer of both Real and Imaginary.

ZMOUT(MA, LINE,LB,LAST1,LAST2)

LINE = MA

Convert from FM to character.

LINE 1is the returned character(l) array.

LB is the dimensioned size of LINE.

LAST1 is returned as the position in LINE of the last character
of REAL(MA)

LAST2 is returned as the position in LINE of the last character
of AIMAG(MA)

ZMPOWER(MA ,MB ,MC) MC = MA ** MB < old name: ZMPWR >
ZMPRINT(MA) Print MA on unit KW using current format. < old name: ZMPRNT >

ZMRATIONAL_POWER(MA,IVAL,JVAL,MB)
MB = MA ** (IVAL/JVAL) < old name: ZMRPWR >

ZMREAD(KREAD,MA) MA is returned after reading one (possibly multi-line) ZM number on
unit KREAD. This routine reads numbers written by ZMWRITE.

ZMREAL (MA ,MBFM) MBFM = REAL(MA) Real part.

ZMSET(NPREC) Set precision to the equivalent of a few more than NPREC base 10
digits. This is now the same as FMSET, but is retained for
compatibility with earlier versions of the package.

ZMSIN(MA,MB) MB = SIN(MA)

ZMSINH(MA ,MB) MB = SINH(MA)

ZMSQR(MA,MB) MB = MA*MA Faster than ZMMPY.
ZMSQRT(MA ,MB) MB = SQRT(MA)

ZMST2M(STRING,MA) MA = STRING
Convert from character string to ZM. ZMST2M is often more
convenient than ZMINP, which converts an array of character(l)
values. Example:
CALL ZMST2M('123.4+5.671",MA).

ZMSUB(MA ;MB ,MC) MC = MA - MB

ZMTAN(MA ;MB) MB = TAN(MA)

ZMTANH(MA ,MB) MB = TANH(MA)

ZMNRITECKWRITE,MA) Write MA on unit KWRITE. Multi-line numbers are formatted for
automatic reading with ZMREAD. < old name: ZMWRIT >

ZMZ2M(ZVAL ,MA) MA = ZVAL

10. EFFICIENCY

To take advantage of hardware architecture on different machines, the package has been designed
so that the arithmetic used to perform the multiple precision operations can easily be changed.
All variables that must be changed to get a different arithmetic have names beginning with 'M'
and are declared using REAL (KIND(1.0D@)) ...

For example, to change the package to use integer arithmetic internally, make these two changes
everywhere in the FM.f95 file.

Change 'REAL (KIND(1.0D@))' to '"INTEGER'.

Change 'AINT (" to '('. Note the blank between AINT and (.

In many places in FM, an AINT function is not supposed to be changed. These are written "AINT(',
with no embedded blank, so they will not be changed by the global change above.

The first of these changes must also be made throughout the file FMSAVE.f95.
Change 'REAL (KIND(1.0D@))' to 'INTEGER'.

This version of FM restricts the base used to be also representable in integer variables, so
using precision above double usually does not save much time unless integers can also be declared
at a higher precision. Using IEEE Extended would allow a base of around 10**9 to be chosen, but
the delayed digit-normalization method used for multiplication and division means that a slightly
smaller base like 10**8 would probably run faster. This would usually not be much faster than
using the usual base 10**7 with double precision.

For cases where special compiler directives or minor re-writing of the code may improve speed,
several of the most important loops in FM are identified by comments containing the string
"(Inner Loop)'.

11. NEW FOR VERSION 1.3

This is the second edition of version 1.3. The first edition appeared in ACM Transactions on

Mathematical Software (2-2011). Since then several additions have been made.
(a) New Fortran-08 functions are available in FMZM
ACOSH(X), ASINH(X), ATANH(X) for real and complex X
ATANCX,Y) can be used in place of ATAN2(X,Y)
BESSEL_JO(X), BESSEL_J1(X), BESSEL_JINCN,X), BESSEL_JNCN1,N2,X)
BESSEL_YQ(X), BESSEL_Y1(X), BESSEL_YN(CN,X), BESSEL_YN(CN1,N2,X)
The older FM names, BESSEL_J(N,X) and BESSEL_Y(N,X) are still available.
ERFC_SCALED(X) for exp(x**2) * erfc(x)
The older FM function LOG_ERFC(X) is also still available for avoiding underflow in erfc.
HYPOT(X,Y) for sqgrt(x**2 + y**2)
NORMZ2(CA) for sqgrt(a(l)**2 + a(2)**2 + ... + a(n)**2)
This could previously have been done with array operations as SQRT(DOT_PRODUCT(A,A)).
(b) Many of the elementary and special functions are now faster, after some code-tuning was
done and a few new methods were added.

The routines for the exponential integral function and related mathematical special functions
are new in version 1.3. These routines are:
FMBESJ, FMBESY, FMC, FMCHI, FMCI, FMEI, FMEN, FMERF, FMERFC, FMLERC, FMLI, FMS, FMSHI, FMSI.

Some of the routines were moved between files FM.f95 and FMZM9@.f95 so that now all routines
using the module FMZM (in file FMZM90.f95) for multiple precision derived types and operator
overloading are located in FMZM9@.f95. This means that programs not using derived types can
skip compiling and/or linking FMZM90.f95.

The array function DOTPRODUCT in FMZM has been re-named DOT_PRODUCT to agree with the Fortran
standard. For type ZM complex arguments its definition has been changed to agree with the
Fortran intrinsic function. When X and Y are complex, DOT_PRODUCT(X,Y) is not just the sum of
the products of the corresponding array elements, as it is for types FM and IM. For type ZM,
the formula is the sum of conjg(X(j)) * Y(j). This definition is used so that the complex dot
product will be an inner product in the mathematical sense.

New routines have been added to module FMZM to provide array syntax for the three multiple
precision derived types. This means statements like V = 1 and A = B + C now work when these
variables are vectors or matrices of multiple precision numbers.

One routine from FM 1.2 has been split into three routines in version 1.3. The routine
FM_RANDOM_SEED from FM 1.2 has become three subroutines, so that the optional arguments and
the need for an explicit interface can be avoided. See the three routines starting with
FM_RANDOM_SEED in the list above. The same multiplicative congruential generator as before
is used, but the shuffling of those values has been removed, so that saving seeds and
re-starting the generator now works more like the standard Fortran random function.

Multiple precision variables were separate fixed-size arrays in previous versions. Now they are
single integers that serve as index values to a single large array (MWK, defined in file
FMSAVE.f95) where the actual values are stored. This often improves both efficiency and memory
utilization, since many compilers implemented the derived type operations using copy inh and copy
out of the arguments for a given operation. Copying entire arrays was slower, and there were
often memory leaks when the compiler automatically created temporary derived type objects while
evaluating derived type expressions. The static arrays in previous versions also meant that
memory was wasted when only a few kinds of operations were used at high precision. Now the
space needed by any unused operations never gets allocated.

Some new error checking is now done for the derived type multiple precision variables. Attempting

to use an undefined variable will cause an error message to be printed.

Much higher precision can be attained in version 1.3, since machines are faster and have more

memory. To support higher precision, a routine for FFT-based multiplication has been included,
and when precision gets high enough, the algorithms for multiplication, division, squares, square
roots, etc., will switch to the FFT routine.

Binary splitting algorithms are used for the mathematical constants at high precision. At the
time version 1.3 was released, computing a million digits of e, pi, or the logarithm of a small
integer took a few seconds, while a million digits of Euler's constant took a few minutes.

Perfect rounding is now done all the time. In version 1.2 perfect rounding was an option, but
the default rounding could round the wrong direction once every few million operations, when the
exact result was very close to halfway between two adjacent representable numbers.

SUBROUTINE FMSET(NPREC)

Initialize the global FM variables that must be set before calling other FM routines.

These variables are initialized to fairly standard values in the FMSAVE.f95 file (MODULE FMVALS),
so calling FMSET at the beginning of a program is now optional. FMSET is a convenient way to set
or change the precision being used, and it also checks to see that the generic values chosen for
several machine-dependent variables are valid.

Base and precision will be set to give at least NPREC+3 decimal digits of precision (giving the
user at least three base ten guard digits). When the base is large, each extra word contains
several extra digits when viewed in base ten. This means that some choices of NPREC will give
a few more than three base ten guard digits.

MBASE (base for FM arithmetic) is set to a large power of ten.
JFORM1 and JFORM2 (default output format controls) are set to ES format displaying NPREC
significant digits.

Several FM options were set here in previous versions of the package, and are now initialized to
their default values in module FMVALS.
Here are the initial settings:

The trace option is set off.

The mode for angles in trig functions is set to radians.
The rounding mode is set to symmetric rounding.

Warning error message level is set to 1.

Cancellation error monitor is set off.

Screen width for output is set to 80 columns.

The exponent character for FM output is set to 'M'.
Debug error checking is set off.

USE FMVALS
IMPLICIT NONE

INTEGER :: NPREC

REAL (KIND(1.0D@)) :: MAXINT_CHK,MXEXPZ2_CHK,MEXPOV_CHK,MEXPUN_CHK ,MUNKNO_CHK
DOUBLE PRECISION :: DPEPS_CHK,DPMAX_CHK,SPMAX_CHK, TEMP

INTEGER :: INTMAX_CHK,K,NPSAVE

INTENT (IN) :: NPREC

