
 PROGRAM ROOTS
 USE FMZM
 IMPLICIT NONE

! Sample root-finding program.

! FM_SECANT is a multiple precision root-finding routine.

! The equation to be solved is F(X,NF) = 0.
! X is the argument to the function.
! NF is the function number in case roots to several functions are needed.

 CHARACTER(80) :: ST1
 TYPE (FM), SAVE :: A1, A2, ROOT
 TYPE (FM), EXTERNAL :: F

! Set the FM precision to 50 significant digits (plus a few "guard digits").

 CALL FM_SET(50)

! Find a root of the first function, X**2 - 3 = 0.
! A1, A2 are two initial guesses for the root.

 A1 = 1
 A2 = 2

! For this call no trace output will be done (KPRT = 0).
! KU = 6 is used, so any error messages will go to the screen.

 WRITE (*,*) ' '
 WRITE (*,*) ' '
 WRITE (*,*) ' Case 1. Call FM_SECANT to find a root between 1 and 2'
 WRITE (*,*) ' for f(x) = X**2 - 3.'
 WRITE (*,*) ' Use KPRT = 0, so no output will be done in the routine, then'
 WRITE (*,*) ' write the results from the main program.'

 CALL FM_SECANT(A1,A2,F,1,ROOT,0,6)

! Write the result, using F35.30 format.

 CALL FM_FORM('F35.30',ROOT,ST1)
 WRITE (* ,"(/' A root for function 1 is ',A)") TRIM(ST1)

! Find a root of the second function, X*tan(X) - 1 = 0. There are infinitely many
! roots, and from the graph we decide to find the one between 6 and 7.

! This time we ask for 50 digits of the root, and use FM_SECANT's built-in trace
! (KPRT = 1) to print the final approximation to the root. The output will appear on
! more than one line, to allow for the possibility that precision could be hundreds or
! thousands of digits, so the number might not fit on one line.

 WRITE (*,*) ' '
 WRITE (*,*) ' '
 WRITE (*,*) ' Case 2. Find a root between 6 and 7 for f(x) = x*tan(x) - 1.'

 WRITE (*,*) ' Use KPRT = 1, so FM_SECANT will print the result.'

 CALL FM_SECANT(TO_FM('6.0D0'),TO_FM('7.0D0'),F,2,ROOT,1,6)

! Find a root of the third function, gamma(x) - 10 = 0. There is one root larger
! than 1, and since gamma(5) is 24 this root is less than 5.

! Get 50 digits of the root, and use FM_SECANT's built-in trace to print all
! iterations (KPRT = 2) as well as the final approximation to the root.

 WRITE (*,*) ' '
 WRITE (*,*) ' '
 WRITE (*,*) ' Case 3. Find a root between 1 and 5 for f(x) = gamma(x) - 10.'
 WRITE (*,*) ' Use KPRT = 2, so FM_SECANT will print all iterations,'
 WRITE (*,*) ' as well as the final result.'

 CALL FM_SECANT(TO_FM(" 1.0 "),TO_FM(" 5.0 "),F,3,ROOT,2,6)

! Find a root of the fourth function, polygamma(0,x) = 0.
! This root is the location of the one positive relative minimum for gamma(x),
! since the derivative of gamma(x) is gamma(x)*polygamma(0,x).

! Get 50 digits of the root, and use KPRT = 1 to print the root.

 WRITE (*,*) ' '
 WRITE (*,*) ' '
 WRITE (*,*) ' Case 4. Find a root between 1 and 2 for f(x) = polygamma(0,x).'
 WRITE (*,*) ' Use KPRT = 1, so FM_SECANT will print the result.'

 CALL FM_SECANT(TO_FM(" 1.0 "),TO_FM(" 2.0 "),F,4,ROOT,1,6)

! Find a root of the fifth function, cos(x) + 1 = 0.
! This root has multiplicity 2 at x = pi.

! Get 50 digits of the root, and use KPRT = 2 to print the iterations.

 WRITE (*,*) ' '
 WRITE (*,*) ' '
 WRITE (*,*) ' Case 5. Find a root near 3.1 for f(x) = cos(x) + 1. (Double root)'
 WRITE (*,*) ' Use KPRT = 2, so FM_SECANT will print the iterations.'

 CALL FM_SECANT(TO_FM(" 3.1 "),TO_FM(" 3.2 "),F,5,ROOT,2,6)

! Find a root of the sixth function, cos(x) + 1 - 1.0D-40 = 0.
! There are two different roots that agree to about 20 digits, so here
! the convergence is slower.

! Get 50 digits of the root, and use KPRT = 1 to print the root.

 WRITE (*,*) ' '
 WRITE (*,*) ' '
 WRITE (*,*) ' Case 6. Find a root near 3.1 for f(x) = cos(x) + 1 - 1.0E-40.'

 WRITE (*,*) ' There are two different roots that agree to about 20 digits,'
 WRITE (*,*) ' so here the convergence is slower.'
 WRITE (*,*) ' Use KPRT = 1, so FM_SECANT will print the result.'

 CALL FM_SECANT(TO_FM(" 3.1 "),TO_FM(" 3.2 "),F,6,ROOT,1,6)

! Find a root of the seventh function, sin(x) + (x - pi) = 0.
! This root has multiplicity 3 at x = pi.

! Get 50 digits of the root, and use KPRT = 2 to print the iterations.

 WRITE (*,*) ' '
 WRITE (*,*) ' '
 WRITE (*,*) ' Case 7. Find a root near 3.1 for f(x) = sin(x)**3. (Triple root)'
 WRITE (*,*) ' Use KPRT = 2, so FM_SECANT will print the iterations.'

 CALL FM_SECANT(TO_FM(" 3.1 "),TO_FM(" 3.2 "),F,7,ROOT,2,6)

 WRITE (*,*) ' '

 END PROGRAM ROOTS

 FUNCTION F(X,NF)
 USE FMZM
 IMPLICIT NONE

! X is the argument to the function.
! NF is the function number.

 INTEGER :: NF
 TYPE (FM) :: F, X

! Functions create temporary multiple precision variables to hold the function values,
! and also for argument values in cases where an argument might be A+B or TO_FM('1.7').
! To avoid deleting these temporaries before we are finished using them, any function
! that returns a multiple precision function value or has multiple precision arguments
! must call FM_ENTER_USER_FUNCTION upon entry and FM_EXIT_USER_FUNCTION when returning.
! The argument for both these routines is the function name, so the FM memory manager
! will know when it is safe to delete these temporary variables.

 CALL FM_ENTER_USER_FUNCTION(F)
 IF (NF == 1) THEN
 F = X*X - 3
 ELSE IF (NF == 2) THEN
 F = X*TAN(X) - 1
 ELSE IF (NF == 3) THEN
 F = GAMMA(X) - 10
 ELSE IF (NF == 4) THEN
 F = POLYGAMMA(0,X)
 ELSE IF (NF == 5) THEN
 F = COS(X) + 1
 ELSE IF (NF == 6) THEN
 F = COS(X) + (1 - TO_FM(' 1.0D-40 '))
 ELSE IF (NF == 7) THEN
 F = SIN(X)**3

 ELSE
 F = 3*X - 2
 ENDIF

 CALL FM_EXIT_USER_FUNCTION(F)
 END FUNCTION F

