MODULE FMVALS

These are the global and saved variables used by the FM package.
See the FM_User_Manual.txt file for further description of some of these variables.

They are initialized assuming the program will run on a 32-bit computer with variables in
FM.f95 having names beginning with 'M' being declared as having 64-bit representations
(DOUBLE PRECISION).

For a machine with a different architecture, or for setting the precision level to a different
value, CALL FMSET(NPREC) before doing any multiple precision operations. FMSET tries to
initialize the variables to the best values for the given machine. To have the values chosen
by FMSET written on unit KW, CALL FMVARS.

Base and precision will be set to give slightly more than 50 decimal digits of precision, giving
the user 50 significant digits of precision along with several base ten guard digits.

MBASE is set to 10**7.
JFORM1 and JFORMZ2 are set to ES format displaying 50 significant digits.

The trace option is set off.

The mode for angles in trig functions is set to radians.

The rounding mode is set to symmetric rounding (to nearest).
Warning error message level is set to 1.

Cancellation error monitor is set off.

Screen width for output is set to 80 columns.

The exponent character for FM output is set to 'M'.

Debug error checking is set off.

KW, the unit number for all FM output, is set to 6.
PRIVATE AINT, CEILING, DIGITS, EPSILON, HUGE, INT, LOG, MAX, MIN, SQRT

REAL (KIND(1.0D@)), PARAMETER :: M_TWO = 2
DOUBLE PRECISION, PARAMETER :: DP_TWO = 2
INTEGER, PARAMETER :: I_TWO = 2

REAL, PARAMETER :: R_TWO = 2

KW is the unit number for standard output from the FM package.
This includes trace output and error messages.

INTEGER, SAVE :: KW = 6

The min below is needed when m-variables have more precision than double,
as with 64-bit integer m-variables and 64-bit doubles (53-bit precision).

REAL (KIND(1.0D@)), PARAMETER :: MAX_REPRESENTABLE_M_VAR = &
C (M_TWO ** (MIN(DIGITSCM_TWO),DIGITS(DP_TWO))-1)) - 1) * 2 + 1

MAXINT should be set to a very large integer, possibly the largest representable
integer for the current machine. For most 32-bit machines, MAXINT is set
to 2**53 - 1 = 9.007D+15 when double precision arithmetic is used for
M-variables. Using integer M-variables usually gives
MAXINT = 2**31 - 1 = 2147483647.

Setting MAXINT to a smaller number is ok, but this unnecessarily restricts

the permissible range of MBASE and MXEXP.
REAL (KIND(1.0D@)), SAVE :: MAXINT = MAX_REPRESENTABLE_M_VAR

INTMAX is a large value close to the overflow threshold for integer variables.
It is usually 2**31 - 1 for machines with 32-bit integer arithmetic.

INTEGER, SAVE :: INTMAX = HUGE(CI_TWO)

DPMAX should be set to a value near the machine's double precision overflow threshold,
so that DPMAX and 1.0D@/DPMAX are both representable in double precision.

DOUBLE PRECISION, SAVE :: DPMAX = HUGE(DP_TWO)/5

SPMAX should be set to a value near the machine's single precision overflow threshold,
so that 1.01*SPMAX and 1.0/SPMAX are both representable in single precision.

REAL, SAVE :: SPMAX = HUGECR_TWO)/5
MXBASE is the maximum value for MBASE.
REAL (KIND(1.0D@)), PARAMETER :: MAX_BASE = AINT(SQRT(MAX_REPRESENTABLE_M_VAR + 1.0D-9))
REAL (KIND(C1.0D@)), SAVE :: MXBASE = MAX_BASE
MBASE is the currently used base for arithmetic.
REAL (KIND(1.0D@)), PARAMETER :: M_TEN = 10
REAL (KIND(1.0D@)), SAVE :: MBASE = M_TEN ** AINT(LOG(MAX_BASE/4.0D@) / L0G(10.0D@))
NDIG is the number of digits currently being carried.
INTEGER, SAVE :: NDIG = CEILING(C 52.0D@ / AINTCLOG(MAX_BASE/4.0D0)/L0G(10.0D0))) + 1
KFLAG is the flag for error conditions.
INTEGER, SAVE :: KFLAG = 0
NTRACE is the trace switch. Default is no printing.
INTEGER, SAVE :: NTRACE = 0

LVLTRC is the trace level. Default is to trace only routines called directly
by the user.

INTEGER, SAVE :: LVLTRC =1
NCALL is the call stack pointer.
INTEGER, SAVE :: NCALL = 0@

RAISE_NDIG is set to 1 when one FM routine calls another and the second one needs
to use more guard digits.

INTEGER, SAVE :: RAISE_NDIG = 0

NAMEST is the call stack.

INTEGER, PRIVATE :: I
CHARACTER(9), SAVE :: NAMEST(0:50) = (/ ('MAIN ', I=0,50) /)

Some constants that are often needed are stored with the maximum precision to which

they have been computed in the currently used base. This speeds up the trig, log,

power, and exponential functions.

NDIGPI is the number of digits available in the currently stored value of pi (MPISAV).
INTEGER, SAVE :: NDIGPI = @

MBSPI is the value of MBASE for the currently stored value of pi.
REAL (KIND(1.0D@)), SAVE :: MBSPI = @

NDIGE is the number of digits available in the currently stored value of e (MESAV).
INTEGER, SAVE :: NDIGE = @

MBSE is the value of MBASE for the currently stored value of e.

REAL (KIND(1.0D@)), SAVE :: MBSE = 0

NDIGLB is the number of digits available in the currently stored value of LN(MBASE)
(MLBSAV).

INTEGER, SAVE :: NDIGLB = @
MBSLB is the value of MBASE for the currently stored value of LN(MBASE).
REAL (KIND(1.0D@)), SAVE :: MBSLB = 0

NDIGLI is the number of digits available in the currently stored values of the four
logarithms used by FMLNI: MLN2, MLN3, MLN5, MLN7.

INTEGER, SAVE :: NDIGLI = @
MBSLI is the value of MBASE for the currently stored values of MLNZ2, MLN3, MLN5, MLN7.
REAL (KIND(1.0D@)), SAVE :: MBSLI = @

MXEXP 1is the current maximum exponent.
MXEXP2 is the internal maximum exponent. This is used to define the overflow and
underflow thresholds.

These values are chosen so that FM routines can raise the overflow/underflow limit
temporarily while computing intermediate results. MXEXP2 satisfies these conditions:
1. EXP(INTMAX) > MXBASE**(MXEXP2+1)

2. MXEXP2 < MAXINT/20

The overflow threshold is MBASE**(MXEXP+1), and the underflow threshold is
MBASE**(-MXEXP-1). This means the valid exponents in the first word of an FM
number can range from -MXEXP to MXEXP+1 (inclusive).

REAL (KIND(C1.0D@)), PARAMETER :: MAX_EXPONENT = AINT(C MIN(C &
MAXCHUGE(INTMAX) / LOG(MAX_BASE+1.0D-9) , 117496405.0D0), &
MAX_REPRESENTABLE_M_VAR / 20.0D0))

REAL (KIND(1.0D@)), SAVE :: MXEXP = AINT(C MAX_EXPONENT / 2.01D@ + ©.5D0)
REAL (KIND(1.0D@)), SAVE :: MXEXPZ2 = MAX_EXPONENT

KACCSW is a switch used to enable cancellation error monitoring. Routines where
cancellation is not a problem run faster by skipping the cancellation monitor
calculations.

KACCSW = @ means no error monitoring,
= 1 means error monitoring is done.

INTEGER, SAVE :: KACCSW = @

MEXPUN is the exponent used as a special symbol for underflowed results.
REAL (KIND(1.0D@)), SAVE :: MEXPUN = AINT(-MAX_EXPONENT * 1.01D0)

MEXPOV 1is the exponent used as a special symbol for overflowed results.
REAL (KIND(1.0D@)), SAVE :: MEXPOV = AINT(MAX_EXPONENT * 1.01D0Q)

MUNKNO is the exponent used as a special symbol for unknown FM results
(1/0, SQRT(-3.0), ...). When changing this value, also change the three
TYPE FM, IM, ZM initializations in FMZM9Q.f95.

REAL (KIND(C1.0D@)), SAVE :: MUNKNO = AINT(MAX_EXPONENT * 1.0201D0)

RUNKNO is returned from FM to real or double conversion routines when no valid result
can be expressed in real or double precision. On systems that provide a value
for undefined results (e.g., Not A Number) setting RUNKNO to that value is
reasonable. On other systems set it to a value that is likely to make any
subsequent results obviously wrong that use it. In either case a KFLAG = -4
condition is also returned.

REAL, SAVE :: RUNKNO = -1.01*CHUGECR_TWO)/3.0)

IUNKNO is returned from FM to integer conversion routines when no valid result can be
expressed as a one word integer. KFLAG = -4 is also set.

INTEGER, SAVE :: IUNKNO = -HUGE(I_TWO)/18
JFORM1 indicates the format used by FMOUT.
INTEGER, SAVE :: JFORM1 = 1
JFORM2 indicates the number of digits used in FMOUT.

INTEGER, SAVE :: JFORMZ2 = 50

KRAD = 1 indicates that trig functions use radians,

= @ means use degrees.

INTEGER, SAVE ::

KWARN

INTEGER, SAVE ::

KROUND

INTEGER, SAVE ::

KRPERF

KRAD = 1

@ indicates that no warning message is printed and execution continues when
UNKNOWN or another exception is produced.

1 means print a warning message and continue.

2 means print a warning message and stop.

KWARN = 1

causes all results to be rounded to the nearest FM number, or to the
value with an even last digit if the result is halfway between two
FM numbers.

@ causes all results to be rounded toward zero (chopped).
-1 causes all results to be rounded toward minus infinity.
2 causes dll results to be rounded toward plus infinity.
KROUND = 1
1 causes more guard digits to be used, to get perfect rounding in the mode
set by KROUND.
@ causes a smaller number of guard digits used, to give nearly perfect

rounding. This number is chosen so that the last intermediate result
should have error less than 0.001 unit in the last place of the final
rounded result.

Beginning with version 1.3 KRPERF is not used, since perfect rounding is always done.
The variable has been left in the package for compatibility with earlier versions.

INTEGER, SAVE ::

KRPERF = 0

KSWIDE defines the maximum screen width to be used for all unit KW output.

INTEGER, SAVE ::

KESWCH

INTEGER, SAVE ::

CMCHAR

CHARACTER, SAV

KDEBUG

KSWIDE = 80

1

causes input to FMINP with no digits before the exponent letter to be
treated as if there were a leading '1'. This is sometimes better for
interactive input: 'E7' converts to 10.0**7.

@ causes a leading zero to be assumed. This gives compatibility with
Fortran: 'E7' converts to 0.0.
KESWCH = 1

defines the exponent letter to be used for FM variable output from FMOUT,
as in 1.2345M+678.
Change it to 'E' for output to be read by a non-FM program.

E ::

INTEGER, SAVE ::

0

1

CMCHAR = 'M'

Error checking is not done for valid input arguments and parameters
like NDIG and MBASE upon entry to each routine.
Error checking is done.

KDEBUG = @

KROUND_RETRY 1is an internal flag controlling cases where the result has close to

1/2 ulp of error and the operation should be done again with more
guard digits to insure perfect rounding.

INTEGER, SAVE :: KROUND_RETRY = 0

KSUB is an internal flag set during subtraction so that the addition routine will
negate its second argument.

INTEGER, SAVE :: KSUB = 0

KSQR is an internal flag set during squaring so that at high precision the
multiplication routine will not need to compute the fft of its second argument.

INTEGER, SAVE :: KSQR = 0

KREM is an internal flag set during high precision integer division operations to
indicate that the remainder in IMDIVR need not be computed.

INTEGER, SAVE :: KREM =1

JRSIGN is an internal flag set during arithmetic operations so that the rounding
routine will know the sign of the final result.

INTEGER, SAVE :: JRSIGN = @

LHASH is a flag variable used to indicate when to initialize two hash tables that are
used for character look-up during input conversion.
LHASH = 1 means that the tables have been built.

LHASH1 and LHASHZ are the array dimensions of the tables.

KHASHT and KHASHV are the two tables.

INTEGER, SAVE :: LHASH = 0

INTEGER, PARAMETER :: LHASH1 = 0

INTEGER, PARAMETER :: LHASHZ = 256

INTEGER, SAVE :: KHASHT(CLHASH1:LHASH2),KHASHV(LHASH1:LHASHZ)

DPEPS 1is the approximate machine precision.
DOUBLE PRECISION, SAVE :: DPEPS = EPSILON(DP_TWQ)
LISUMS is the maximum number of concurrent sums to use in function evaluation.
INTEGER, PARAMETER :: LJSUMS = 1000
Saved constants that depend on MBASE.
REAL (KIND(1.0D@)), SAVE :: MBLOGS = @
(Setting MBLOGS to zero here will cause the other variables that depend on MBASE
to automatically be defined when the first FM operation is done.)
REAL, SAVE :: ALOGMB

REAL, SAVE :: ALOGM2
REAL, SAVE :: ALOGMX

1.611810E+1
2.325350E+1
3.673680E+1

REAL, SAVE :: ALOGMT = 7.0QE0Q
INTEGER, SAVE :: NGRDZ21 = 1
INTEGER, SAVE :: NGRD5Z = 2
INTEGER, SAVE :: NGRD22 = 2

REAL (KIND(1.0D@)), SAVE :: MEXPAB = AINT(MAX_EXPONENT / 5.0D0)

DOUBLE PRECISION, SAVE :: DLOGMB = 1.611809565095832D+1
DOUBLE PRECISION, SAVE :: DLOGTN = 2.302585092994046D+0
DOUBLE PRECISION, SAVE :: DLOGTW = 6.931471805599453D-1
DOUBLE PRECISION, SAVE :: DPPI = 3.141592653589793D+0
DOUBLE PRECISION, SAVE :: DLOGTP = 1.837877066409345D+0
DOUBLE PRECISION, SAVE :: DLOGPI = 1.144729885849400D+0
DOUBLE PRECISION, SAVE :: DLOGEB = 2.236222824932432D+0@
REAL (KIND(1.0D@)), SAVE :: MBASEL = 0@

REAL (KIND(1.0D@)), SAVE :: MBASEN = 0@

REAL (KIND(1.0D@)), SAVE :: M_VAL, M_VAL1, M_VALZ, M_VAL3, M_VAL4

INTEGER, SAVE :: NDIGL = 0@
INTEGER, SAVE :: NDIGN = 0@
INTEGER, SAVE :: NGUARL = @
INTEGER, SAVE :: N21
INTEGER, SAVE :: NGRDN

These variables are used by FM_RANDOM_NUMBER.
MBRAND 1is the base used for the random number arithmetic.
It needs to remain the same even if the user changes MBASE.

REAL (KIND(1.0D@)), SAVE :: MBRAND = M_TEN ** AINT(LOG(MAX_BASE/4.0D®) / LOG(10.0D2))

INTEGER, SAVE :: MRNX
INTEGER, SAVE :: MRNA = -3

INTEGER, SAVE :: MRNM = -3

INTEGER, SAVE :: MRNC = -3

INTEGER, SAVE :: START_RANDOM_SEQUENCE = -1
INTEGER, SAVE :: LAST_DIGIT_OF_M_M1

DOUBLE PRECISION, SAVE :: DPM

1
1
w

Work area for FM numbers, and related variables.

INTEGER, SAVE :: SIZE_OF_MWK = @

REAL (KIND(1.0D@)), SAVE, DIMENSION(C:), ALLOCATABLE :: MWK, MOVE_MWK, MOVE_F
INTEGER, PARAMETER :: START_RESIZE = 100000

INTEGER, SAVE :: SIZE_OF_START = 2 * START_RESIZE

LOGICAL, SAVE :: IN_USER_FUNCTION = .FALSE.

INTEGER, SAVE :: USER_FUNCTION_LEVEL = @

INTEGER, SAVE :: LEVEL_OF_RECURSION = 0

INTEGER, SAVE :: NUMBER_USED_AT_LEVEL(1000)

INTEGER, SAVE, DIMENSION(C:), ALLOCATABLE :: START, TEMPV, RESIZE, SIZE_OF, TEMP?7
INTEGER, PARAMETER :: SIZE_OF_TEMP6 = 100

INTEGER, SAVE :: FMTEMP6(SIZE_OF_TEMP6), NMAX_FMTEMP6 = @, N_
INTEGER, SAVE :: IMTEMPG6(SIZE_OF_TEMP6), NMAX_IMTEMP6 = @, N_
INTEGER, SAVE :: TOTAL_TEMP?7 = @

INTEGER, SAVE :: LOWEST_SAVED_AREA_INDEX = 2*START_RESIZE + 1
INTEGER, SAVE :: START_OF_MWK_SAVED_AREA = 0

INTEGER, SAVE :: MINIMUM_SAVED_CONSTANTS_USED = 10**9
INTEGER, SAVE :: NUMBER_USED = @

INTEGER, SAVE :: MAXIMUM_NUMBER_USED = 0

INTEGER, SAVE :: MAXIMUM_MWK_USED = @

INTEGER, SAVE :: RESULT_SIZE = @

@, TOTAL_FMTEMP6

FMTEMP6
I @, TOTAL_IMTEMP6

MTEMP6

INTEGER, SAVE :: TEMPV_CALL_STACK = @
INTEGER, SAVE :: MNA = -4
INTEGER, SAVE :: MAD = -4
INTEGER, SAVE :: MWE = -4
INTEGER, SAVE :: MPA = -3
INTEGER, SAVE :: MPB = -3
INTEGER, SAVE :: MPC = -3
INTEGER, SAVE :: MPD = -3
INTEGER, SAVE :: MWNI = -3
INTEGER, SAVE :: MPMA
INTEGER, SAVE :: MPMB = -3
INTEGER, SAVE :: MPX(2) = (/ -3, -3 /)
INTEGER, SAVE :: MPY(2) = (/ -3, -3 /)
INTEGER, SAVE :: MPZ(2) = (/ -3, -3 /)

1
1
w

Variables related to input/output and formatting.

INTEGER, SAVE :: LMBUFF = 0
INTEGER, SAVE :: LMBUFZ = 0
CHARACTER, SAVE, DIMENSION(C:), ALLOCATABLE :: CMBUFF,CMBUFZ,MOVE_CMBUFF

Saved FM constants.

INTEGER, SAVE :: MPISAV = -3
INTEGER, SAVE :: MESAV = -3
INTEGER, SAVE :: MLBSAV = -3
INTEGER, SAVE :: MLNZ = -3
INTEGER, SAVE :: MLN3 = -3
INTEGER, SAVE :: MLN5 = -3
INTEGER, SAVE :: MLN7 = -3

Set the default value of JFORMZ to give ' 1.23 + 4.56 i ' style format for output
of complex variables.

INTEGER, SAVE :: JFORMZ =1

Set the default value of JPRNTZ to print real and imaginary parts on one line
whenever possible.

INTEGER, SAVE :: JPRNTZ =1
MBERN 1is the array used to save Bernoulli numbers so they do not have to be
re-computed on subsequent calls.
NDBERN is the array used to save the number of digits in the current base for
each of the saved Bernoulli numbers.
MBSBRN is the value of MBASE for the currently saved Bernoulli numbers.
REAL (KIND(1.0D@)), SAVE :: MBSBRN = 0
NUMBRN is the number of the largest Bernoulli number saved using base MBSBRN.

INTEGER, SAVE :: NUMBRN = @

LMBERN is the size of the arrays MBERN and NDBERN.

INTEGER, PARAMETER :: LMBERN = 60000
INTEGER, SAVE, DIMENSIONCLMBERN) :: MBERN = (/ (-3 , I = 1, LMBERN) /)
INTEGER, SAVE, DIMENSIONCLMBERN) :: NDBERN = 0

B(2N) is stored in MBERN(N) for 2N >= 28.

M_EULER is the saved value of Euler's constant.
M_GAMMA_MA is the last input value to FMGAM, and
M_GAMMA_MB 1is the corresponding output value.
M_LN_2PI holds the saved value of LN(2*pi).

INTEGER, SAVE :: M_EULER = -3
INTEGER, SAVE :: M_GAMMA_MA
INTEGER, SAVE :: M_GAMMA_MB
INTEGER, SAVE :: M_LN_2PI = -3

-3
-3

MBSGAM is the value of MBASE used in the currently stored value of
M_GAMMA_MA and M_GAMMA_MB.
NDGGAM 1is the maximum NDIG used in the currently stored value of
M_GAMMA_MA and M_GAMMA_MB.
REAL (KIND(1.0D@)), SAVE :: MBSGAM = 0
INTEGER, SAVE :: NDGGAM = 0

MBS2PI is the value of MBASE used in the currently stored value of LN(2*pi).
NDG2PI is the maximum NDIG used in the currently stored value of LN(2*pi).

REAL (KIND(1.0D@)), SAVE :: MBSZPI = 0@
INTEGER, SAVE :: NDGZPI = @

MBSEUL is the value of MBASE used in the currently stored value of M_EULER.
NDGEUL is the maximum NDIG used in the currently stored value of M_EULER.

REAL (KIND(1.0D@)), SAVE :: MBSEUL = 0@
INTEGER, SAVE :: NDGEUL = @

END MODULE FMVALS

