PROGRAM TEST
Version 1.4.

This is a sample program using the FMZM modules for doing arithmetic using the FM, IM, and ZM
derived types.

The program's output to the screen is also saved in file SampleFM.out.
The program checks all the results and the last line of the output file should be
"Al1l results were ok."

These examples show various ways to use the FM package, but the methods used are not always
the most advanced for the sample problem.

USE FMZM
IMPLICIT NONE

Declare the multiple precision variables. The three types are:
(FM) for multiple precision real

(IM) for multiple precision integer

(ZM) for multiple precision complex

TYPE (FM), SAVE :: X1, X2, X3, X4

TYPE (FM), SAVE, ALLOCATABLE :: A(:,:), B(C:,:), Vi(:), Vv2(:)
TYPE (IM), SAVE :: I1, I2, I3

TYPE (ZM), SAVE :: 71, 72, 73, Z4

Declare the function name of a type (FM) function that will be passed as an argument
to a subroutine called from this program.

TYPE (FM), EXTERNAL :: F
Declare the other variables (not multiple precision).
CHARACTER(80) :: ST1
CHARACTER(175) :: FMT
INTEGER :: ITER, J, K, KOUT, NERROR
INTEGER :: SEED(7)
DOUBLE PRECISION :: VALUE
Write output to the screen (unit *), and also to the file SampleFM.out.

KOUT = 18
OPEN (KOUT,FILE='SampleFM.out")

NERROR = 0

1. Find a root of the equation f(x) = x**5 - 3x**4 4+ x**3 - 4x**2 + x - 6 = 0.
Set precision to give at least 60 significant digits.
CALL FM_SET(60)

Use Newton's method with initial guess x = 3.12.
Horner's rule is used to evaluate the function.



X1 = TO_FM('

FMT = "(//'

X1 is the previous iterate.
X2 is the current iterate.

TO_FM is a function for converting other types of numbers to type FM. Note that
TO_FM(3.12) converts the REAL constant to FM, but it is accurate only to single
precision, since the number 3.12 cannot be represented exactly in binary and has
already been rounded to single precision. Similarly, TO_FM(3.12D@) agrees with
3.12 to double precision accuracy, and TO_FM('3.12') or TO_FM(312)/TO_FM(100)
agrees to full FM accuracy.

Here, TO_FM(3.12) would be ok, since Newton iteration will correct the error
coming from single precision, but it is a good habit to use the more accurate
form.

3.12")
Print the first iteration.

Sample 1. Redal root of f(x) = x**5 - 3x**4 4 x**3 - 4x**2 + x - 6 =0."//"// &

"' Iteration Newton approximation')"

WRITE (*

FMT)

WRITE (KOUT,FMT)

FM_FORM is a formatting subroutine.

CALL FM_FORM('F65.60",X1,ST1)

WRITE (*

"(/110,4X,A)") 0,TRIM(STL)

WRITE (KOUT,"(/I10,4X,A)") @,TRIM(ST1)

DO ITER =1, 10

X3 is f(X1).

X3 = (CCAXL-3D*X1+1)*X1-4)*X1+1)*X1-6

X4

X2

X4 is f'(X1).

(C(5*X1-12)*X1+3)*X1-8)*X1+1

X1 - X3/X4

Print each iteration.

CALL FM_FORM('F65.60",X2,ST1)

WRITE (*

,"(/110,4%,A)") ITER,TRIM(STL)

WRITE (KOUT,"(/I1@,4X,A)") ITER,TRIM(ST1)

Stop iterating if X1 and X2 agree to over 6@ places.

X4 = ABS(X1-X2)
IF (X4 < 1.0D-61) EXIT

X1 = X2
ENDDO

Set X1 = X2 for the next iteration.

Check the answer.



X3 = TO_FM('3.1206562153267265004709560135237974846546239355990660149888284358 ")

It is slightly safer to do this test with .NOT. instead of
IF (ABS(X3-X2) >= 1.@D-61) THEN

because if the result of ABS(X3-X2) is FM's UNKNOWN value,

the comparison returns false for all comparisons.

IF (.NOT.(ABS(X3-X2) < 1.@D-61)) THEN
NERROR = NERROR + 1

WRITE (* ,"(/'" Error in sample case number 1.'/)")
WRITE (KOUT,"(/" Error in sample case number 1.'/)")
ENDIF

2. Higher Precision. Compute the root above to 500 decimal places.
CALL FM_SET(500)
It is tempting to just say X1 = X3 here to initialize the start of the higher
precision iterations to be the check value defined above. That will not work,
because precision has changed. Most of the digits of X3 may be undefined at
the new precision.
The most flexible way to pad a lower precision value with zeros when raising
precision is to use subroutine FM_EQU, but here it is easier to re-define X1
from scratch at the new precision.
X1 = TO_FM('3.1206562153267265004709560135237974846546239355990660149888284358")
DO ITER = 1, 10
X3 is f(X1).
X3 = ((CCX1-3)*X1+1)*X1-4)*X1+1)*X1-6
X4 is f'(X1).
X4 = (((5*X1-12)*X1+3)*X1-8)*X1+1
X2 = X1 - X3/X4
Stop iterating if X1 and X2 agree to over 500 places.

X4 = ABS(X1-X2)

Compare this test to the similar one in case 1 above.
For machines with 64-bit double precision, 1.0D-501 would be smaller than the

smallest positive number. So this error tolerance is converted to an FM number

from character form.
IF (X4 < TO_FM('1.QE-501")) EXIT
Set X1 = X2 for the next iteration.

X1
ENDDO

X2

For very high precision output, it is sometimes more convenient to use FM_PRINT



to format and print the numbers, since the line breaks are handled automatically.
The unit number for the output, KW, and the format codes to be used, JFORM1 and
JFORM2, are internal FM variables.

Subroutine FM_SETVAR 1is used to re-define these, and the new values will remain in
effect for any further calls to FM_PRINT.

Other variables that can be changed and the options they control are listed in the
documentation at the top of file FM.f95.

Set the FM_PRINT format to F505.500

CALL FM_SETVAR(C" JFORM1
CALL FM_SETVAR(' JFORMZ

2"
500 ')

Set the output screen width to 90 columns.
CALL FM_SETVAR(' KSWIDE = 90 ")

FMT = "(///" Sample 2. Find the root above to 500 decimal places.'/)"
WRITE (* ,FMT)
WRITE (KOUT,FMT)

Write to the output file.

CALL FM_SETVARC" KW = 18 ')
CALL FM_PRINT(X2)

Write to the screen (unit 6).

CALL FM_SETVAR(C' KW = 6 ')
CALL FM_PRINT(X2)

Check the answer.

X3 = TO_FM('3.1206562153267265004709560135237974846546239355990660149888284358190264999" // &
'517954689783257450017151095811923431332682839420040840535954560118152245371"// &
'792881305271951017118938898212403662058307303983547376913282000110058273504"'// &
'202838670709895619275413484521549282591891156945200789415818387529512010999"'// &
'602155131321076797099026664236992803703462570149559724389392331827597552460"'// &
'610612200485579529156910428115547013787714423708578161025641555097481179969"'// &
'175028390105904786831680128384331143259309155577171683842444352768419176139060 ')

IF (.NOT.(CABS(X3-X2) < TO_FM('1.@QE-501'))) THEN
NERROR = NERROR + 1

WRITE (* ,"(/" Error in sample case number 2.'/)")
WRITE (KOUT,"(/" Error in sample case number 2.'/)")
ENDIF

3. Compute the Riemann zeta function for s=3.

Use Gosper's formula: zeta(3) =
(5/4)*Sum[ (-1)**k * (k!)**2 / ((k+1)**2 * (2k+1)!) ]
while k = 0, 1,

X1 is the current partial sum.
X2 is the current term.
X3 is k!



CALL
X1 =
X3 =
X4 =

DO K =

J

X4
X2

J

X2

X4 is (2k+1)!

FM_SET(60)

= 2*K*(2*K+1)
= J*X4
= X3%*2
= (K+1)*(K+1)
= (X2/1)/X4

IF (MOD(K,2) == 0) THEN

X1 = X1 + X2

ELSE

X1 =X1 - X2

ENDIF

Test for convergence.

Here the rate of convergence is much slower than in the Newton iterations above.
Asking for 60 digits in the call to FM_SET will cause the internal precision to
be set slightly higher than that, giving the user a few guard digits.

X2 is the difference between the two most recent partial sums, so the test
below will stop the sum when the last two partial sums agree to at least 65
significant digits.

IF (ABS(X2/X1) < 1.0D-65) THEN

FMT = "(///" Sample 3.",2X,I5,"' terms were added in the zeta sum.'/)"
WRITE (*  ,FMT) K

WRITE (KOUT,FMT) K

EXIT

ENDIF

ENDDO

Print the result.

X1 = (5*X1)/4

CALL FM_FORM('F63.60",X1,ST1)

WRITE (* ,"(" zeta(3) = ',A)") TRIM(ST1)
WRITE (KOUT,"(' zeta(3) = ',AD") TRIM(ST1)

Check the answer.

X3 = TO_FM('1.202056903159594285399738161511449990764986292340498881792271555")
IF (.NOT.CABS(X1-X3) < 1.0D-61)) THEN

NERROR = NERROR + 1

WRITE (* ,"(/" Error in sample case number 3.'/)")

WRITE (KOUT,"(/" Error in sample case number 3.'/)")

ENDIF

4. Integer multiple precision calculations.

Fermat's theorem says x**(p-1) mod p = 1 when p is prime and x is not a
multiple of p.

If x**(p-1) mod p gives 1 for some p with several different x's, then it is
very likely that p is prime (but it is not certain until further tests are done).



Find a 70-digit number p that is "probably" prime.

Use FM_RANDOM_NUMBER to generate a random 7@0-digit starting value and search for
a prime from that point.

Initialize the generator.
Note that VALUE is double precision, unlike the similar Fortran intrinsic random

number routine, which returns a single-precision result.

SEED = (/ 2718281,8284590,4523536,0287471,3526624,9775724,7093698 /)
CALL FM_RANDOM_SEED_PUT(SEED)

I1 is the value p being tested.

I1=0
I3 = TO_IM(10)**13
DOJ=1, 6

CALL FM_RANDOM_NUMBER(CVALUE)
I2 = 1.0D13*VALUE
I1 = I1*I3 + 12

ENDDO

I3 = TO_IM(10)**70

I1 = MOD(I1,I3)

To speed up the search, test only values that are not
multiples of 2, 3, 5, 7, 11, 13.

K = 2%3*5%7%11%13
I1 = (I1/K)*K + K + 1
I3 =3

DO J = 1, 100
I2=1I1-1

Compute 3**(p-1) mod p

I3 = POWER_MOD(I3,I2,I1)
IF (I3 == 1) THEN

Check that 7**(p-1) mod p is also 1.

I3 =7

I3 = POWER_MOD(I3,12,I1)

IF (I3 == 1) THEN
FMT = "(///" Sample 4.',2X,I5,' values were checked before finding a prime p.'/)"
WRITE (*  ,FMT) J
WRITE (KOUT,FMT) J
EXIT

ENDIF

ENDIF

I3
I1
ENDDO

I
w

I1 + K

Print the result.



CALL IM_FORM('I72',I1,ST1)
WRITE (* ,"C' p =',A)") TRIM(ST1)
WRITE (KOUT,"(' p =',A)") TRIM(ST1)

Check the answer.
I3 = TO_IM('9552131129056058313103536357738804884840825498503088946760768419490591")
IF

(.NOT.(I1 == I3)) THEN
NERROR = NERROR + 1

WRITE (* , (/' Error in sample case number 4.'/)™)
WRITE (KOUT,"(/" Error in sample case number 4.'/)")
ENDIF

5. Log Integral function.
Estimate the number of primes less than 10**30.

FMT = "(///" Sample 5. Log integral. Estimate the number of primes less than 10**30.'/"// &
" It should be accurate to about 15 significant digits.'/)"

WRITE (* ,FMT)

WRITE (KOUT,FMT)

I2 = TO_IM(LOG_INTEGRAL(TO_FM('1.0E+30')))
Print the result.
CALL IM_FORM('I30Q',I12,ST1)
WRITE (* ,Cint(11i(1.0e+30)) = ",A)") TRIM(STL1)
WRITE (KOUT,"(" int(1i(1.0e+30)) = ",A)") TRIM(ST1)
Check the answer.
I3 = TO_IM('14692398897720447639079087669")

IF (.NOT.(I2 == I3)) THEN
NERROR = NERROR + 1

WRITE (* ,"(/" Error in sample case number 5.'/)")
WRITE (KOUT,"(/" Error in sample case number 5.'/)")
ENDIF

6. Gamma function.

Check that gamma(1/2) is sqrt(pi)
FMT = "(///" Sample 6. Check that gamma(1/2) = sqrt(pi).'/)"
WRITE (* ,FMT)
WRITE (KOUT,FMT)
X2 = GAMMACTO_FM(C'@.5"))

Print the result.
CALL FM_FORM('F63.60',X2,ST1)
WRITE (* , (" gamma(1/2) = ",A)") TRIM(ST1)
WRITE (KOUT,"(' gamma(l/2) = ',A)") TRIM(ST1)

Check the answer.



X3 = SQRTCACOSCTO_FM(-1)))
IF (.NOT.(CABS(X3-X2) < 1.@0D-61)) THEN
NERROR = NERROR + 1

WRITE (* ,"(/" Error in sample case number 6.'/)")
WRITE (KOUT,"(/" Error in sample case number 6.'/)™)
ENDIF

7. Psi and polygamma functions.

Rational series can often be summed using these functions.

Sum (n=1 to infinity) 1/(n**2 * (8n+1)**2) =

16*(psi(1l) - psi(9/8)) + polygamma(l,1) + polygamma(l,9/8)
Reference: Abramowitz & Stegun, Handbook of Mathematical Functions,
chapter 6, Example 10.

FMT = "(///"' Sample 7. Psi and polygamma functions.'/)"
WRITE C* ,FMD)
WRITE (KOUT,FMT)

X2 = 16*(PSI(TO_FM(1)) - PSI(TO_FM(9)/8)) + POLYGAMMA(1,TO_FM(1)) + POLYGAMMA(1,TO_FM(9)/8)
Print the result.

CALL FM_FORM('F65.60',X2,ST1)

FMT = "(" Sum (n=1 to infinity) 1/(n**2 * (8n+1)**2) = '/9X,A)"

WRITE (* ,FMT) TRIM(ST1)

WRITE (KOUT,FMT) TRIM(ST1)
Check the answer.

X3 = TO_FM('1.3499486145413024755107829105035147950644978635837270816327396M-2")

TF (.NOT.(ABS(X3-X2) < 1.@D-61)) THEN
NERROR = NERROR + 1

WRITE (* ,"(/" Error in sample case number 7.'/)")
WRITE (KOUT,"(/" Error in sample case number 7.'/)")
ENDIF

8. Incomplete gamma and gamma functions.

Find the probability that an observed chi-square for a correct model should be
less that 2.3 when the number of degrees of freedom is 5.

Reference: Knuth, Volume 2, 3rd ed., Page 56, and Press, Flannery, Teukolsky,
Vetterling, Numerical Recipes, 1lst ed., Page 165.

FMT = "(///" Sample 8. Incomplete gamma and gamma functions.'/)"
WRITE C* ,FMT)
WRITE (KOUT,FMT)

X1
X2

TO_FM(5)/2
INCOMPLETE_GAMMAL(X1,TO_FM('2.3")/2) / GAMMA(X1)

Print the result.

CALL FM_FORM('F62.60',X2,ST1)
WRITE (* ,"(' Probability = ',A)") TRIM(ST1)



WRITE (KOUT,"(" Probability = ',A)") TRIM(ST1)
Check the answer.
X3 = TO_FM('0.19373313011487144632751025918250599953472318607121386973066283739")

IF (.NOT.(ABS(X3-X2) < 1.@D-61)) THEN
NERROR = NERROR + 1

WRITE (* ,"(/" Error in sample case number 8.'/)")
WRITE (KOUT,"(/" Error in sample case number 8.'/)")
ENDIF

9. Error function.

Find the probability that a value drawn from a normal distribution is within
1 or 2 or 3 standard deviations from the mean.

FMT = "(///" Sample 9. Error function. Probability that a value drawn from a normal'/"// &
" distribution is within k standard deviations from the mean.'/)"

WRITE (* ,FMT)

WRITE (KOUT,FMT)

DO K=1, 3
X1 = K / SQRT(TO_FM(2))
X2 = ERF(X1)

Print the results.

CALL FM_FORM('F52.50",X2,ST1)
WRITE (* ,"(" k = ',I2,", probability
WRITE (KOUT,"(' k = ',I2,', probability

" A" K, TRIM(STL)
" A" K, TRIM(ST1)

Check the answer.

IF (K == 1) THEN

X3 = TO_FM('0.68268949213708589717046509126407584495582593345320878197478890049 ")
ELSE IF (K == 2) THEN

X3 = TO_FM('0.95449973610364158559943472566693312505644755259664313203266799974 ")
ELSE

X3 = TO_FM('0.99730020393673981094669637046481004524434126368323870127155602929 ")
ENDIF
TF (.NOT.(ABS(X3-X2) < 1.@D-61)) THEN

NERROR = NERROR + 1

WRITE (* ,"(/" Error in sample case number 9.'/)™)
WRITE (KOUT,"(/' Error in sample case number 9.'/)")
ENDIF

ENDDO

10. Array operations.

Find the dominant eigenvalue and a corresponding eigenvector for this 5x5 matrix:

>
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Use the power method. Compute B = A**n. If vl is an initial guess for the
largest magnitude eigenvector, v2 = B*vl should be a more accurate approximation.
The ratio of the elements of v3 = A*v2 to those of v2 gives an estimate of the
corresponding eigenvalue. By repeatedly squaring the matrix, each iteration uses
the next higher power of 2 for n.

FMT = "(///" Sample 1@. Eigenvalue from matrix powers.')"
WRITE (* ,FMT)
WRITE (KOUT,FMT)

These type FM arrays were declared as allocatable. Allocate them now, and initialize.

ALLOCATEC A(5,5) )
ALLOCATE(C B(5,5) )
ALLOCATEC V1(5) )
ALLOCATEC V2(5) )

To initialize the matrix, we can use array sections to set one row at a time, and the
FMZM interface will take care of converting from integer to type (FM). If the values
were not integers, we could say A(1,1:5) = (/ TO_FM(C" 3.7 "), TO_FM(' 4.2 '), etc.

AC1,1:5) =(/ 3, 1, 4, 1, 5 /)
AC2,1:5) =(/ 9, 2, 6, 5, 3 /)
AG3,1:5) =(/5,8,9,7,9/)
AC4,1:5) = (/ 3, 2, 3, &, 4 /)
A(5,1:5) = (/ 6, 2, 6, 4, 3 /)

Initialize all elements of the initial guess vector to 1.

Vi=1

B =A

WRITE (* ,"(/" Iteration eigenvalue approximation ')™)
WRITE (KOUT,"(/" Iteration eigenvalue approximation ')")
D0J=1, 7

B = MATMUL(B,B)

V1 = MATMUL(B,V1)

V2 = MATMUL(A,V1)

X1 = V2(1) / Vi(L)

CALL FM_FORM('F64.57',X1,ST1)

WRITE (* ,"(/I10,A)") J,TRIM(STL)

WRITE (KOUT,"(/I10,A)") J,TRIM(STL)
ENDDO

Normalize the eigenvector (L-2 norm).

V2 = V2 / NORM2(V2)
WRITE (* ,"(/" The corresponding eigenvector is'/)")
WRITE (KOUT,"(/" The corresponding eigenvector is'/)")
DOJ=1,5

CALL FM_FORM('F61.57',V2(3),ST1)

WRITE (* ,"(CA)") TRIM(STL)

WRITE (KOUT,"(CA)") TRIM(STL)
ENDDO

Check the answer.



X3 = TO_FM('23.91276717232132858935703922800330450554912919599927298216827247803204")
IF (.NOT.(CABS(X3-X1) < 1.@0D-61)) THEN
NERROR = NERROR + 1

WRITE (* ,"(/" Error in sample case number 10.'/)")
WRITE (KOUT,"(/" Error in sample case number 10.'/)")
ENDIF

11. Function and subroutine example.
Find the integral from @ to 1/2 of 2*exp(-x**2)/sqrt(pi).

The exact value of the integral is erf(1/2).
Use a simple numerical integration routine to apply an integration rule
using 100 intervals.

CALL FM_SET(40)

FMT = "(///" Sample 11. Function and subroutine example.'/)"
WRITE (* ,FMT)
WRITE (KOUT,FMT)

X1 =0
X2 = TO_FMC' 0.5 ')
CALL PLAN_9(F,X1,X2,100,X3)

Print the result.
CALL FM_FORM('F32.30',X3,ST1)

WRITE (* ,"(" Integral ",AD") TRIM(STL)
WRITE (KOUT,"(" Integral ",A)") TRIM(ST1)

Check the answer.

X4 = ERF(TO_FM('0.5"))
TF (.NOT.(ABS(X3-X4) < 1.@D-31)) THEN
NERROR = NERROR + 1

WRITE (* ,"(/" Error in sample case number 11.'/)")
WRITE (KOUT,"(/" Error in sample case number 11.'/)")
ENDIF

Complex arithmetic.
Set precision to give at least 30 significant digits.
CALL FM_SET(30)
12. Find a complex root of the equation
f(x) = x**¥5 - 3x**¥4 4+ x**3 - 4x*¥*2 + x - 6 = 0.
Newton's method with initial guess x = .56 + 1.06 1i.

Z1 is the previous iterate.
Z2 is the current iterate.

Z1 = TO_ZM(".56 + 1.06 i')



Print the first iteration.

FMT = "(///" Sample 12. Complex root of f(x) = x**5 - 3x**4 4 x**3 - 4x**2 + x - 6 =0."," &
//"//" Iteration Newton approximation')"

WRITE C(* ,FMD)

WRITE (KOUT,FMT)

CALL ZM_FORM('F32.30','F32.30',Z1,ST1)

WRITE (* ,"(/I6,4X,A)") 0,TRIM(ST1)

WRITE (KOUT,"(/I6,4X,A)") 0,TRIM(ST1)

DO ITER =1, 10
Z3 is f(Z1).

73 = ((((Z1-3)*Z1+1)*Z1-4)*Z1+1)*Z1-6

Z4 is f'(Z1).
724 = (((5*Z1-12)*Z1+3)*71-8)*71+1
22 =71 - 73/74

Print each iteration.
CALL ZM_FORM('F32.30','F32.30',Z22,ST1)
WRITE (* ,"(/I6,4X,A)™) ITER,TRIM(ST1)
WRITE (KOUT,"(/I6,4X,A)") ITER,TRIM(ST1)
Stop iterating if Z1 and Z2 agree to over 30 places.
IF (CABS(Z1-Z2) < 1.@D-31) EXIT

Set Z1 = Z2 for the next iteration.

71 = 72
ENDDO

Check the answer.

Z3 = TO_ZM('0.561958308335403235498111195347453 + 1.061134679604332556983391239058885 1')
IF (.NOT.(ABS(Z3-7Z2) < 1.@0D-31)) THEN
NERROR = NERROR + 1

WRITE (* ,' (/" Error in sample case number 12.'/)")
WRITE (KOUT,"(/" Error in sample case number 12.'/)")
ENDIF

13. Compute exp(1l.23-2.341).
Use the direct Taylor series.
Z1 is x.
Z2 is the current term, x**n/n!.

Z3 is the current partial sum.

71
72

TO_ZM('1.23-2.341")
1



-1
DO K =1, 10
72 = 72*7
74 = 73 +

IF (24 ==

0
1/K
2

Test for convergence.
This is a common way to check for series convergence -- wait until the term
being added is so close to zero that the sum does not change. That is fine

here, because we are using the default round-to-nearest rounding mode.

There is a pitfall if we were to re-run the program with a different rounding
mode. For example, if we change the rounding mode to round toward +infinity,

then at 30-digit precision the addition 1.2 + 3.4e-100 rounds up to 1.200..

and so the test to see if the sum did not change might never be satisfied.
This problem can occur with either type FM or ZM sums.

For cases where other rounding modes might be used, doing the convergence check

like we did in the zeta sum of example 3 above is better. Here that would be
IF (ABS(Z2/7Z3) < 1.@D-35) THEN

Z3) THEN

FMT = "(///" Sample 13.',2X,I5,"' terms were added to get exp(1.23-2.341i).'/)"

WRITE
WRITE
EXIT
ENDIF
73 = 74
ENDDO

(* ,FMT) K
(KOUT, FMT) K

Print the result.

CALL ZM_FORM('F33.30','F32.30',723,ST1)

WRITE (*
WRITE (KOUT,

Z4 = TO_ZM('-2.379681796854777515745457977696745 - 2.458032970832342652397461908326042 i')

IF (.NOT.(AB

NERROR =

WRITE (*

"(" Result= ",A)") TRIM(ST1)
"(" Result= ",A)") TRIM(ST1)

Check the answer.
S(Z4-73) < 1.0D-31)) THEN

NERROR + 1
,"(/" Error in sample case number 13.'/)")

WRITE (KOUT,"(/" Error in sample case number 13.'/)")

ENDIF

14.

Exception handling.
Iterate (real) exp(x) starting at 1.0 until overflow occurs.

Testing to see if a type FM number is one of the special cases (+-overflow,
+-underflow or unknown) by direct comparison can be tricky. When X1 is
+overflow, the statement

IF (X1 == TO_FM(' +OVERFLOW ')) THEN
will return false, since the comparison routine cannot be sure that two
different overflowed results would have been equal if the overflow threshold
had been higher.

.001



Function IS_OVERFLOW can be used to directly check whether a number is + or -
overflow, so that is a safer test.

The FM warning message is written on unit KW, so in this test it appears on the
screen and not in the output file.

CALL FM_SET(60)
X1 = TO_FM(1)

FMT = "(///"' Sample 14. Exception handling.'//12X," // &
"' Iterate exp(x) starting at 1.0 until overflow occurs.'//" // &
"12X," An FM warning message will be printed before the last iteration.')"
WRITE (*,FMT)
FMT = "(///"' Sample 14. Exception handling.'//" // &
"12X,"' Iterate exp(x) starting at 1.0 until overflow occurs.')"
WRITE (KOUT,FMT)

D0 J=1, 10
X1 = EXP(X1)
CALL FM_FORM('ES60.40',X1,ST1)
WRITE (* ,"(/' Iteration',I3,5X,A)") J,TRIM(ST1)
WRITE (KOUT,"(/' Tteration',I3,5X,A)") J,TRIM(ST1)
IF (IS_OVERFLOW(X1)) EXIT

ENDDO

Check that the last result was +overflow.

IF (IS_OVERFLOW(CX1)) THEN
WRITE (* ,"(/" Overflow was correctly detected.')")
WRITE (KOUT,"(/' Overflow was correctly detected.')")
ELSE
NERROR = NERROR + 1
WRITE (* ,"(/" Error in sample case number 14.'/)")
WRITE (* ,"(/" Overflow was not correctly detected.')")
WRITE (KOUT ,"(/' Error in sample case number 14.'/)")
WRITE (KOUT ,"(/' Overflow was not correctly detected.')")
ENDIF

IF (NERROR == @) THEN
WRITE (* L/ /7A/)") T ALL results were ok -- no errors were found. !
WRITE (KOUT,"(//A/)") ' All results were ok -- no errors were found.'
ELSE

WRITE (* ,"(//I3,A/)") NERROR,' error(s) found.'
WRITE (KOUT,"(//I3,A/)") NERROR,' error(s) found.'
ENDIF
STOP

END PROGRAM TEST
SUBROUTINE PLAN_9(F,A,B,N,RESULT)
Sample subroutine usage for FM.
Integrate F(X) from A to B using N subintervals, and return the answer in RESULT.

This does numerical integration using a 9-point rule.
It is not a very good way to do high-precision integration, but it is a short routine



and can often get 20 to 30 digits if f(x) is well-behaved and the interval of integration
is not too big.

USE FMZM

IMPLICIT NONE

TYPE (FM) :: A, B, RESULT
TYPE (FM), SAVE :: H, H8, XJ
TYPE (FM), EXTERNAL :: F
INTEGER :: N, J

INTENT (IN) :: N, A, B
INTENT (INOUT) :: RESULT

H= (B - AN
H8 = H/8
RESULT = 0
DO J =1, N
XJ = A + (J-1)*H
RESULT = RESULT +  989*F(XJ) + 5888*F(XJ+ H8) -  928*F(XJ+2*H8) + &
10496*F(XJ+3*H8) - 4540*F(XJ+4*H8) + 10496*F(XJ+5*H8) - &
928*F(XJ+6*H8) + 5888*F(XJ+7*H8) +  989*F(XJ+8*H8)
ENDDO

RESULT = H*RESULT/28350
END SUBROUTINE PLAN_9

FUNCTION FCXD RESULT (RETURN_VALUE)

Sample function usage for FM.

The test function for the integration subroutine is 2*exp(-x**2)/sqrt(pi).

USE FMZM
IMPLICIT NONE

TYPE (FM) :: RETURN_VALUE, X
TYPE (FM), SAVE :: PI

Compare the usage here with the SQRTCACOS(TO_FM(-1))) usage in the gamma example
in the main program. There pi was only used once, so ACOSCTO_FM(-1)) is more like
what a non-multiple-precision program would do to get pi.

If we need pi in a function like F that will be called hundreds of times, the acos
call will be done every time. Here, since the argument is -1, the acos routine will
recognize it as a special case and return the saved value of pi without needlessly
making the program slower. But if another formula were used, like pi = 6*asin(1/2),
it would be better to call FM_PI, since pi would be computed only once and later calls
just use the saved value of pi.

Another reason to call FM_PI instead of using a formula is that in case the calling
program changed the trig function mode to degrees, instead of the default radians,
then ACOS(TO_FM(-1)) would give 180, not pi.

For this case the 2/sqrt(pi) could have been factored out of the integral so pi would
not be needed every time F is called, but it was left in to illustrate similar but
more complicated situations.

CALL FM_PI(PI)
RETURN_VALUE = 2*EXP(-X**2)/SQRT(PI)



END FUNCTION F



