
¬
 PROGRAM TEST¬
¬
! Version 1.4.¬
¬
! This is a sample program using the FMZM modules for doing arithmetic using the FM, IM, and ZM¬
! derived types.¬
¬
! The program's output to the screen is also saved in file SampleFM.out.¬
! The program checks all the results and the last line of the output file should be¬
! "All results were ok."¬
¬
! These examples show various ways to use the FM package, but the methods used are not always¬
! the most advanced for the sample problem.¬
¬
 USE FMZM¬
¬
 IMPLICIT NONE¬
¬
! Declare the multiple precision variables. The three types are:¬
! (FM) for multiple precision real¬
! (IM) for multiple precision integer¬
! (ZM) for multiple precision complex¬
¬
 TYPE (FM), SAVE :: X1, X2, X3, X4¬
 TYPE (FM), SAVE, ALLOCATABLE :: A(:,:), B(:,:), V1(:), V2(:)¬
 TYPE (IM), SAVE :: I1, I2, I3¬
 TYPE (ZM), SAVE :: Z1, Z2, Z3, Z4¬
¬
! Declare the function name of a type (FM) function that will be passed as an argument¬
! to a subroutine called from this program.¬
¬
 TYPE (FM), EXTERNAL :: F¬
¬
! Declare the other variables (not multiple precision).¬
¬
 CHARACTER(80) :: ST1¬
 CHARACTER(175) :: FMT¬
 INTEGER :: ITER, J, K, KOUT, NERROR¬
 INTEGER :: SEED(7)¬
 DOUBLE PRECISION :: VALUE¬
¬
! Write output to the screen (unit *), and also to the file SampleFM.out.¬
¬
 KOUT = 18¬
 OPEN (KOUT,FILE='SampleFM.out')¬
¬
 NERROR = 0¬
¬
¬
! 1. Find a root of the equation f(x) = x**5 - 3x**4 + x**3 - 4x**2 + x - 6 = 0.¬
¬
! Set precision to give at least 60 significant digits.¬
¬
 CALL FM_SET(60)¬
¬
! Use Newton's method with initial guess x = 3.12.¬
! Horner's rule is used to evaluate the function.¬

¬
! X1 is the previous iterate.¬
! X2 is the current iterate.¬
¬
! TO_FM is a function for converting other types of numbers to type FM. Note that¬
! TO_FM(3.12) converts the REAL constant to FM, but it is accurate only to single¬
! precision, since the number 3.12 cannot be represented exactly in binary and has¬
! already been rounded to single precision. Similarly, TO_FM(3.12D0) agrees with¬
! 3.12 to double precision accuracy, and TO_FM('3.12') or TO_FM(312)/TO_FM(100)¬
! agrees to full FM accuracy.¬
! Here, TO_FM(3.12) would be ok, since Newton iteration will correct the error¬
! coming from single precision, but it is a good habit to use the more accurate¬
! form.¬
¬
 X1 = TO_FM('3.12')¬
¬
! Print the first iteration.¬
¬
 FMT = "(//' Sample 1. Real root of f(x) = x**5 - 3x**4 + x**3 - 4x**2 + x - 6 = 0.'//"// &¬
 "' Iteration Newton approximation')"¬
 WRITE (* ,FMT)¬
 WRITE (KOUT,FMT)¬
¬
! FM_FORM is a formatting subroutine.¬
¬
 CALL FM_FORM('F65.60',X1,ST1)¬
 WRITE (* ,"(/I10,4X,A)") 0,TRIM(ST1)¬
 WRITE (KOUT,"(/I10,4X,A)") 0,TRIM(ST1)¬
¬
 DO ITER = 1, 10¬
¬
! X3 is f(X1).¬
¬
 X3 = ((((X1-3)*X1+1)*X1-4)*X1+1)*X1-6¬
¬
! X4 is f'(X1).¬
¬
 X4 = (((5*X1-12)*X1+3)*X1-8)*X1+1¬
¬
 X2 = X1 - X3/X4¬
¬
! Print each iteration.¬
¬
 CALL FM_FORM('F65.60',X2,ST1)¬
 WRITE (* ,"(/I10,4X,A)") ITER,TRIM(ST1)¬
 WRITE (KOUT,"(/I10,4X,A)") ITER,TRIM(ST1)¬
¬
! Stop iterating if X1 and X2 agree to over 60 places.¬
¬
 X4 = ABS(X1-X2)¬
 IF (X4 < 1.0D-61) EXIT¬
¬
! Set X1 = X2 for the next iteration.¬
¬
 X1 = X2¬
 ENDDO¬
¬
! Check the answer.¬

¬
 X3 = TO_FM('3.1206562153267265004709560135237974846546239355990660149888284358')¬
¬
! It is slightly safer to do this test with .NOT. instead of¬
! IF (ABS(X3-X2) >= 1.0D-61) THEN¬
! because if the result of ABS(X3-X2) is FM's UNKNOWN value,¬
! the comparison returns false for all comparisons.¬
¬
 IF (.NOT.(ABS(X3-X2) < 1.0D-61)) THEN¬
 NERROR = NERROR + 1¬
 WRITE (* ,"(/' Error in sample case number 1.'/)")¬
 WRITE (KOUT,"(/' Error in sample case number 1.'/)")¬
 ENDIF¬
¬
¬
! 2. Higher Precision. Compute the root above to 500 decimal places.¬
¬
 CALL FM_SET(500)¬
¬
! It is tempting to just say X1 = X3 here to initialize the start of the higher¬
! precision iterations to be the check value defined above. That will not work,¬
! because precision has changed. Most of the digits of X3 may be undefined at¬
! the new precision.¬
! The most flexible way to pad a lower precision value with zeros when raising¬
! precision is to use subroutine FM_EQU, but here it is easier to re-define X1¬
! from scratch at the new precision.¬
¬
 X1 = TO_FM('3.1206562153267265004709560135237974846546239355990660149888284358')¬
¬
 DO ITER = 1, 10¬
¬
! X3 is f(X1).¬
¬
 X3 = ((((X1-3)*X1+1)*X1-4)*X1+1)*X1-6¬
¬
! X4 is f'(X1).¬
¬
 X4 = (((5*X1-12)*X1+3)*X1-8)*X1+1¬
¬
 X2 = X1 - X3/X4¬
¬
! Stop iterating if X1 and X2 agree to over 500 places.¬
¬
 X4 = ABS(X1-X2)¬
¬
! Compare this test to the similar one in case 1 above.¬
! For machines with 64-bit double precision, 1.0D-501 would be smaller than the¬
! smallest positive number. So this error tolerance is converted to an FM number¬
! from character form.¬
¬
 IF (X4 < TO_FM('1.0E-501')) EXIT¬
¬
! Set X1 = X2 for the next iteration.¬
¬
 X1 = X2¬
 ENDDO¬
¬
! For very high precision output, it is sometimes more convenient to use FM_PRINT¬

! to format and print the numbers, since the line breaks are handled automatically.¬
! The unit number for the output, KW, and the format codes to be used, JFORM1 and¬
! JFORM2, are internal FM variables.¬
! Subroutine FM_SETVAR is used to re-define these, and the new values will remain in¬
! effect for any further calls to FM_PRINT.¬
¬
! Other variables that can be changed and the options they control are listed in the¬
! documentation at the top of file FM.f95.¬
¬
! Set the FM_PRINT format to F505.500¬
¬
 CALL FM_SETVAR(' JFORM1 = 2 ')¬
 CALL FM_SETVAR(' JFORM2 = 500 ')¬
¬
! Set the output screen width to 90 columns.¬
¬
 CALL FM_SETVAR(' KSWIDE = 90 ')¬
¬
 FMT = "(///' Sample 2. Find the root above to 500 decimal places.'/)"¬
 WRITE (* ,FMT)¬
 WRITE (KOUT,FMT)¬
¬
! Write to the output file.¬
¬
 CALL FM_SETVAR(' KW = 18 ')¬
 CALL FM_PRINT(X2)¬
¬
! Write to the screen (unit 6).¬
¬
 CALL FM_SETVAR(' KW = 6 ')¬
 CALL FM_PRINT(X2)¬
¬
! Check the answer.¬
¬
 X3 = TO_FM('3.1206562153267265004709560135237974846546239355990660149888284358190264999' // &¬
 '517954689783257450017151095811923431332682839420040840535954560118152245371'// &¬
 '792881305271951017118938898212403662058307303983547376913282000110058273504'// &¬
 '202838670709895619275413484521549282591891156945200789415818387529512010999'// &¬
 '602155131321076797099026664236992803703462570149559724389392331827597552460'// &¬
 '610612200485579529156910428115547013787714423708578161025641555097481179969'// &¬
 '175028390105904786831680128384331143259309155577171683842444352768419176139060')¬
¬
 IF (.NOT.(ABS(X3-X2) < TO_FM('1.0E-501'))) THEN¬
 NERROR = NERROR + 1¬
 WRITE (* ,"(/' Error in sample case number 2.'/)")¬
 WRITE (KOUT,"(/' Error in sample case number 2.'/)")¬
 ENDIF¬
¬
¬
! 3. Compute the Riemann zeta function for s=3.¬
¬
! Use Gosper's formula: zeta(3) =¬
! (5/4)*Sum[(-1)**k * (k!)**2 / ((k+1)**2 * (2k+1)!)]¬
! while k = 0, 1,¬
¬
! X1 is the current partial sum.¬
! X2 is the current term.¬
! X3 is k!¬

! X4 is (2k+1)!¬
¬
 CALL FM_SET(60)¬
 X1 = 1¬
 X3 = 1¬
 X4 = 1¬
 DO K = 1, 200¬
 X3 = K*X3¬
 J = 2*K*(2*K+1)¬
 X4 = J*X4¬
 X2 = X3**2¬
 J = (K+1)*(K+1)¬
 X2 = (X2/J)/X4¬
 IF (MOD(K,2) == 0) THEN¬
 X1 = X1 + X2¬
 ELSE¬
 X1 = X1 - X2¬
 ENDIF¬
¬
! Test for convergence.¬
! Here the rate of convergence is much slower than in the Newton iterations above.¬
! Asking for 60 digits in the call to FM_SET will cause the internal precision to¬
! be set slightly higher than that, giving the user a few guard digits.¬
! X2 is the difference between the two most recent partial sums, so the test¬
! below will stop the sum when the last two partial sums agree to at least 65¬
! significant digits.¬
¬
 IF (ABS(X2/X1) < 1.0D-65) THEN¬
 FMT = "(///' Sample 3.',2X,I5,' terms were added in the zeta sum.'/)"¬
 WRITE (* ,FMT) K¬
 WRITE (KOUT,FMT) K¬
 EXIT¬
 ENDIF¬
 ENDDO¬
¬
! Print the result.¬
¬
 X1 = (5*X1)/4¬
 CALL FM_FORM('F63.60',X1,ST1)¬
 WRITE (* ,"(' zeta(3) = ',A)") TRIM(ST1)¬
 WRITE (KOUT,"(' zeta(3) = ',A)") TRIM(ST1)¬
¬
! Check the answer.¬
¬
 X3 = TO_FM('1.202056903159594285399738161511449990764986292340498881792271555')¬
 IF (.NOT.(ABS(X1-X3) < 1.0D-61)) THEN¬
 NERROR = NERROR + 1¬
 WRITE (* ,"(/' Error in sample case number 3.'/)")¬
 WRITE (KOUT,"(/' Error in sample case number 3.'/)")¬
 ENDIF¬
¬
¬
! 4. Integer multiple precision calculations.¬
¬
! Fermat's theorem says x**(p-1) mod p = 1 when p is prime and x is not a¬
! multiple of p.¬
! If x**(p-1) mod p gives 1 for some p with several different x's, then it is¬
! very likely that p is prime (but it is not certain until further tests are done).¬

¬
! Find a 70-digit number p that is "probably" prime.¬
¬
! Use FM_RANDOM_NUMBER to generate a random 70-digit starting value and search for¬
! a prime from that point.¬
¬
! Initialize the generator.¬
! Note that VALUE is double precision, unlike the similar Fortran intrinsic random¬
! number routine, which returns a single-precision result.¬
¬
 SEED = (/ 2718281,8284590,4523536,0287471,3526624,9775724,7093698 /)¬
 CALL FM_RANDOM_SEED_PUT(SEED)¬
¬
! I1 is the value p being tested.¬
¬
 I1 = 0¬
 I3 = TO_IM(10)**13¬
 DO J = 1, 6¬
 CALL FM_RANDOM_NUMBER(VALUE)¬
 I2 = 1.0D13*VALUE¬
 I1 = I1*I3 + I2¬
 ENDDO¬
 I3 = TO_IM(10)**70¬
 I1 = MOD(I1,I3)¬
¬
! To speed up the search, test only values that are not¬
! multiples of 2, 3, 5, 7, 11, 13.¬
¬
 K = 2*3*5*7*11*13¬
 I1 = (I1/K)*K + K + 1¬
 I3 = 3¬
¬
 DO J = 1, 100¬
 I2 = I1 - 1¬
¬
! Compute 3**(p-1) mod p¬
¬
 I3 = POWER_MOD(I3,I2,I1)¬
 IF (I3 == 1) THEN¬
¬
! Check that 7**(p-1) mod p is also 1.¬
¬
 I3 = 7¬
 I3 = POWER_MOD(I3,I2,I1)¬
 IF (I3 == 1) THEN¬
 FMT = "(///' Sample 4.',2X,I5,' values were checked before finding a prime p.'/)"¬
 WRITE (* ,FMT) J¬
 WRITE (KOUT,FMT) J¬
 EXIT¬
 ENDIF¬
 ENDIF¬
¬
 I3 = 3¬
 I1 = I1 + K¬
 ENDDO¬
¬
! Print the result.¬
¬

 CALL IM_FORM('I72',I1,ST1)¬
 WRITE (* ,"(' p =',A)") TRIM(ST1)¬
 WRITE (KOUT,"(' p =',A)") TRIM(ST1)¬
¬
! Check the answer.¬
¬
 I3 = TO_IM('9552131129056058313103536357738804884840825498503088946760768419490591')¬
 IF (.NOT.(I1 == I3)) THEN¬
 NERROR = NERROR + 1¬
 WRITE (* ,"(/' Error in sample case number 4.'/)")¬
 WRITE (KOUT,"(/' Error in sample case number 4.'/)")¬
 ENDIF¬
¬
¬
! 5. Log Integral function.¬
¬
! Estimate the number of primes less than 10**30.¬
¬
 FMT = "(///' Sample 5. Log integral. Estimate the number of primes less than 10**30.'/"// &¬
 "' It should be accurate to about 15 significant digits.'/)"¬
 WRITE (* ,FMT)¬
 WRITE (KOUT,FMT)¬
¬
 I2 = TO_IM(LOG_INTEGRAL(TO_FM('1.0E+30')))¬
¬
! Print the result.¬
¬
 CALL IM_FORM('I30',I2,ST1)¬
 WRITE (* ,"(' int(li(1.0e+30)) = ',A)") TRIM(ST1)¬
 WRITE (KOUT,"(' int(li(1.0e+30)) = ',A)") TRIM(ST1)¬
¬
! Check the answer.¬
¬
 I3 = TO_IM('14692398897720447639079087669')¬
 IF (.NOT.(I2 == I3)) THEN¬
 NERROR = NERROR + 1¬
 WRITE (* ,"(/' Error in sample case number 5.'/)")¬
 WRITE (KOUT,"(/' Error in sample case number 5.'/)")¬
 ENDIF¬
¬
¬
! 6. Gamma function.¬
¬
! Check that gamma(1/2) is sqrt(pi)¬
¬
 FMT = "(///' Sample 6. Check that gamma(1/2) = sqrt(pi).'/)"¬
 WRITE (* ,FMT)¬
 WRITE (KOUT,FMT)¬
¬
 X2 = GAMMA(TO_FM('0.5'))¬
¬
! Print the result.¬
¬
 CALL FM_FORM('F63.60',X2,ST1)¬
 WRITE (* ,"(' gamma(1/2) = ',A)") TRIM(ST1)¬
 WRITE (KOUT,"(' gamma(1/2) = ',A)") TRIM(ST1)¬
¬
! Check the answer.¬

¬
 X3 = SQRT(ACOS(TO_FM(-1)))¬
 IF (.NOT.(ABS(X3-X2) < 1.0D-61)) THEN¬
 NERROR = NERROR + 1¬
 WRITE (* ,"(/' Error in sample case number 6.'/)")¬
 WRITE (KOUT,"(/' Error in sample case number 6.'/)")¬
 ENDIF¬
¬
¬
! 7. Psi and polygamma functions.¬
¬
! Rational series can often be summed using these functions.¬
! Sum (n=1 to infinity) 1/(n**2 * (8n+1)**2) =¬
! 16*(psi(1) - psi(9/8)) + polygamma(1,1) + polygamma(1,9/8)¬
! Reference: Abramowitz & Stegun, Handbook of Mathematical Functions,¬
! chapter 6, Example 10.¬
¬
 FMT = "(///' Sample 7. Psi and polygamma functions.'/)"¬
 WRITE (* ,FMT)¬
 WRITE (KOUT,FMT)¬
¬
 X2 = 16*(PSI(TO_FM(1)) - PSI(TO_FM(9)/8)) + POLYGAMMA(1,TO_FM(1)) + POLYGAMMA(1,TO_FM(9)/8)¬
¬
! Print the result.¬
¬
 CALL FM_FORM('F65.60',X2,ST1)¬
 FMT = "(' Sum (n=1 to infinity) 1/(n**2 * (8n+1)**2) = '/9X,A)"¬
 WRITE (* ,FMT) TRIM(ST1)¬
 WRITE (KOUT,FMT) TRIM(ST1)¬
¬
! Check the answer.¬
¬
 X3 = TO_FM('1.3499486145413024755107829105035147950644978635837270816327396M-2')¬
 IF (.NOT.(ABS(X3-X2) < 1.0D-61)) THEN¬
 NERROR = NERROR + 1¬
 WRITE (* ,"(/' Error in sample case number 7.'/)")¬
 WRITE (KOUT,"(/' Error in sample case number 7.'/)")¬
 ENDIF¬
¬
¬
! 8. Incomplete gamma and gamma functions.¬
¬
! Find the probability that an observed chi-square for a correct model should be¬
! less that 2.3 when the number of degrees of freedom is 5.¬
! Reference: Knuth, Volume 2, 3rd ed., Page 56, and Press, Flannery, Teukolsky,¬
! Vetterling, Numerical Recipes, 1st ed., Page 165.¬
¬
 FMT = "(///' Sample 8. Incomplete gamma and gamma functions.'/)"¬
 WRITE (* ,FMT)¬
 WRITE (KOUT,FMT)¬
¬
 X1 = TO_FM(5)/2¬
 X2 = INCOMPLETE_GAMMA1(X1,TO_FM('2.3')/2) / GAMMA(X1)¬
¬
! Print the result.¬
¬
 CALL FM_FORM('F62.60',X2,ST1)¬
 WRITE (* ,"(' Probability = ',A)") TRIM(ST1)¬

 WRITE (KOUT,"(' Probability = ',A)") TRIM(ST1)¬
¬
! Check the answer.¬
¬
 X3 = TO_FM('0.19373313011487144632751025918250599953472318607121386973066283739')¬
 IF (.NOT.(ABS(X3-X2) < 1.0D-61)) THEN¬
 NERROR = NERROR + 1¬
 WRITE (* ,"(/' Error in sample case number 8.'/)")¬
 WRITE (KOUT,"(/' Error in sample case number 8.'/)")¬
 ENDIF¬
¬
¬
! 9. Error function.¬
¬
! Find the probability that a value drawn from a normal distribution is within¬
! 1 or 2 or 3 standard deviations from the mean.¬
¬
 FMT = "(///' Sample 9. Error function. Probability that a value drawn from a normal'/"// &¬
 "' distribution is within k standard deviations from the mean.'/)"¬
 WRITE (* ,FMT)¬
 WRITE (KOUT,FMT)¬
¬
 DO K = 1, 3¬
 X1 = K / SQRT(TO_FM(2))¬
 X2 = ERF(X1)¬
¬
! Print the results.¬
¬
 CALL FM_FORM('F52.50',X2,ST1)¬
 WRITE (* ,"(' k = ',I2,', probability = ',A)") K,TRIM(ST1)¬
 WRITE (KOUT,"(' k = ',I2,', probability = ',A)") K,TRIM(ST1)¬
¬
! Check the answer.¬
¬
 IF (K == 1) THEN¬
 X3 = TO_FM('0.68268949213708589717046509126407584495582593345320878197478890049')¬
 ELSE IF (K == 2) THEN¬
 X3 = TO_FM('0.95449973610364158559943472566693312505644755259664313203266799974')¬
 ELSE¬
 X3 = TO_FM('0.99730020393673981094669637046481004524434126368323870127155602929')¬
 ENDIF¬
 IF (.NOT.(ABS(X3-X2) < 1.0D-61)) THEN¬
 NERROR = NERROR + 1¬
 WRITE (* ,"(/' Error in sample case number 9.'/)")¬
 WRITE (KOUT,"(/' Error in sample case number 9.'/)")¬
 ENDIF¬
 ENDDO¬
¬
¬
! 10. Array operations.¬
¬
! Find the dominant eigenvalue and a corresponding eigenvector for this 5x5 matrix:¬
¬
! 3 1 4 1 5¬
! 9 2 6 5 3¬
! A = 5 8 9 7 9¬
! 3 2 3 8 4¬
! 6 2 6 4 3¬

¬
! Use the power method. Compute B = A**n. If v1 is an initial guess for the¬
! largest magnitude eigenvector, v2 = B*v1 should be a more accurate approximation.¬
! The ratio of the elements of v3 = A*v2 to those of v2 gives an estimate of the¬
! corresponding eigenvalue. By repeatedly squaring the matrix, each iteration uses¬
! the next higher power of 2 for n.¬
¬
 FMT = "(///' Sample 10. Eigenvalue from matrix powers.')"¬
 WRITE (* ,FMT)¬
 WRITE (KOUT,FMT)¬
¬
! These type FM arrays were declared as allocatable. Allocate them now, and initialize.¬
¬
 ALLOCATE(A(5,5))¬
 ALLOCATE(B(5,5))¬
 ALLOCATE(V1(5))¬
 ALLOCATE(V2(5))¬
¬
! To initialize the matrix, we can use array sections to set one row at a time, and the¬
! FMZM interface will take care of converting from integer to type (FM). If the values¬
! were not integers, we could say A(1,1:5) = (/ TO_FM(' 3.7 '),TO_FM(' 4.2 '), etc.¬
¬
 A(1,1:5) = (/ 3, 1, 4, 1, 5 /)¬
 A(2,1:5) = (/ 9, 2, 6, 5, 3 /)¬
 A(3,1:5) = (/ 5, 8, 9, 7, 9 /)¬
 A(4,1:5) = (/ 3, 2, 3, 8, 4 /)¬
 A(5,1:5) = (/ 6, 2, 6, 4, 3 /)¬
¬
! Initialize all elements of the initial guess vector to 1.¬
¬
 V1 = 1¬
¬
 B = A¬
 WRITE (* ,"(/' Iteration eigenvalue approximation ')")¬
 WRITE (KOUT,"(/' Iteration eigenvalue approximation ')")¬
 DO J = 1, 7¬
 B = MATMUL(B,B)¬
 V1 = MATMUL(B,V1)¬
 V2 = MATMUL(A,V1)¬
 X1 = V2(1) / V1(1)¬
 CALL FM_FORM('F64.57',X1,ST1)¬
 WRITE (* ,"(/I10,A)") J,TRIM(ST1)¬
 WRITE (KOUT,"(/I10,A)") J,TRIM(ST1)¬
 ENDDO¬
¬
! Normalize the eigenvector (L-2 norm).¬
¬
 V2 = V2 / NORM2(V2)¬
 WRITE (* ,"(/' The corresponding eigenvector is'/)")¬
 WRITE (KOUT,"(/' The corresponding eigenvector is'/)")¬
 DO J = 1, 5¬
 CALL FM_FORM('F61.57',V2(J),ST1)¬
 WRITE (* ,"(A)") TRIM(ST1)¬
 WRITE (KOUT,"(A)") TRIM(ST1)¬
 ENDDO¬
¬
! Check the answer.¬
¬

 X3 = TO_FM('23.91276717232132858935703922800330450554912919599927298216827247803204')¬
 IF (.NOT.(ABS(X3-X1) < 1.0D-61)) THEN¬
 NERROR = NERROR + 1¬
 WRITE (* ,"(/' Error in sample case number 10.'/)")¬
 WRITE (KOUT,"(/' Error in sample case number 10.'/)")¬
 ENDIF¬
¬
¬
! 11. Function and subroutine example.¬
¬
! Find the integral from 0 to 1/2 of 2*exp(-x**2)/sqrt(pi).¬
¬
! The exact value of the integral is erf(1/2).¬
! Use a simple numerical integration routine to apply an integration rule¬
! using 100 intervals.¬
¬
 CALL FM_SET(40)¬
¬
 FMT = "(///' Sample 11. Function and subroutine example.'/)"¬
 WRITE (* ,FMT)¬
 WRITE (KOUT,FMT)¬
¬
 X1 = 0¬
 X2 = TO_FM(' 0.5 ')¬
 CALL PLAN_9(F,X1,X2,100,X3)¬
¬
! Print the result.¬
¬
 CALL FM_FORM('F32.30',X3,ST1)¬
 WRITE (* ,"(' Integral = ',A)") TRIM(ST1)¬
 WRITE (KOUT,"(' Integral = ',A)") TRIM(ST1)¬
¬
! Check the answer.¬
¬
 X4 = ERF(TO_FM('0.5'))¬
 IF (.NOT.(ABS(X3-X4) < 1.0D-31)) THEN¬
 NERROR = NERROR + 1¬
 WRITE (* ,"(/' Error in sample case number 11.'/)")¬
 WRITE (KOUT,"(/' Error in sample case number 11.'/)")¬
 ENDIF¬
¬
¬
! Complex arithmetic.¬
¬
! Set precision to give at least 30 significant digits.¬
¬
 CALL FM_SET(30)¬
¬
¬
! 12. Find a complex root of the equation¬
! f(x) = x**5 - 3x**4 + x**3 - 4x**2 + x - 6 = 0.¬
¬
! Newton's method with initial guess x = .56 + 1.06 i.¬
¬
! Z1 is the previous iterate.¬
! Z2 is the current iterate.¬
¬
 Z1 = TO_ZM('.56 + 1.06 i')¬

¬
! Print the first iteration.¬
¬
 FMT = "(///' Sample 12. Complex root of f(x) = x**5 - 3x**4 + x**3 - 4x**2 + x - 6 = 0.'," &¬
 //"//' Iteration Newton approximation')"¬
 WRITE (* ,FMT)¬
 WRITE (KOUT,FMT)¬
 CALL ZM_FORM('F32.30','F32.30',Z1,ST1)¬
 WRITE (* ,"(/I6,4X,A)") 0,TRIM(ST1)¬
 WRITE (KOUT,"(/I6,4X,A)") 0,TRIM(ST1)¬
¬
 DO ITER = 1, 10¬
¬
! Z3 is f(Z1).¬
¬
 Z3 = ((((Z1-3)*Z1+1)*Z1-4)*Z1+1)*Z1-6¬
¬
! Z4 is f'(Z1).¬
¬
 Z4 = (((5*Z1-12)*Z1+3)*Z1-8)*Z1+1¬
¬
 Z2 = Z1 - Z3/Z4¬
¬
! Print each iteration.¬
¬
 CALL ZM_FORM('F32.30','F32.30',Z2,ST1)¬
 WRITE (* ,"(/I6,4X,A)") ITER,TRIM(ST1)¬
 WRITE (KOUT,"(/I6,4X,A)") ITER,TRIM(ST1)¬
¬
! Stop iterating if Z1 and Z2 agree to over 30 places.¬
¬
 IF (ABS(Z1-Z2) < 1.0D-31) EXIT¬
¬
! Set Z1 = Z2 for the next iteration.¬
¬
 Z1 = Z2¬
 ENDDO¬
¬
! Check the answer.¬
¬
 Z3 = TO_ZM('0.561958308335403235498111195347453 + 1.061134679604332556983391239058885 i')¬
 IF (.NOT.(ABS(Z3-Z2) < 1.0D-31)) THEN¬
 NERROR = NERROR + 1¬
 WRITE (* ,"(/' Error in sample case number 12.'/)")¬
 WRITE (KOUT,"(/' Error in sample case number 12.'/)")¬
 ENDIF¬
¬
¬
! 13. Compute exp(1.23-2.34i).¬
¬
! Use the direct Taylor series.¬
¬
! Z1 is x.¬
! Z2 is the current term, x**n/n!.¬
! Z3 is the current partial sum.¬
¬
 Z1 = TO_ZM('1.23-2.34i')¬
 Z2 = 1¬

 Z3 = 1¬
 DO K = 1, 100¬
 Z2 = Z2*Z1/K¬
 Z4 = Z3 + Z2¬
¬
! Test for convergence.¬
¬
! This is a common way to check for series convergence -- wait until the term¬
! being added is so close to zero that the sum does not change. That is fine¬
! here, because we are using the default round-to-nearest rounding mode.¬
¬
! There is a pitfall if we were to re-run the program with a different rounding¬
! mode. For example, if we change the rounding mode to round toward +infinity,¬
! then at 30-digit precision the addition 1.2 + 3.4e-100 rounds up to 1.200...001¬
! and so the test to see if the sum did not change might never be satisfied.¬
! This problem can occur with either type FM or ZM sums.¬
¬
! For cases where other rounding modes might be used, doing the convergence check¬
! like we did in the zeta sum of example 3 above is better. Here that would be¬
! IF (ABS(Z2/Z3) < 1.0D-35) THEN¬
¬
 IF (Z4 == Z3) THEN¬
 FMT = "(///' Sample 13.',2X,I5,' terms were added to get exp(1.23-2.34i).'/)"¬
 WRITE (* ,FMT) K¬
 WRITE (KOUT,FMT) K¬
 EXIT¬
 ENDIF¬
 Z3 = Z4¬
 ENDDO¬
¬
! Print the result.¬
¬
 CALL ZM_FORM('F33.30','F32.30',Z3,ST1)¬
 WRITE (* ,"(' Result= ',A)") TRIM(ST1)¬
 WRITE (KOUT,"(' Result= ',A)") TRIM(ST1)¬
¬
! Check the answer.¬
¬
 Z4 = TO_ZM('-2.379681796854777515745457977696745 - 2.458032970832342652397461908326042 i')¬
 IF (.NOT.(ABS(Z4-Z3) < 1.0D-31)) THEN¬
 NERROR = NERROR + 1¬
 WRITE (* ,"(/' Error in sample case number 13.'/)")¬
 WRITE (KOUT,"(/' Error in sample case number 13.'/)")¬
 ENDIF¬
¬
¬
! 14. Exception handling.¬
¬
! Iterate (real) exp(x) starting at 1.0 until overflow occurs.¬
¬
! Testing to see if a type FM number is one of the special cases (+-overflow,¬
! +-underflow or unknown) by direct comparison can be tricky. When X1 is¬
! +overflow, the statement¬
! IF (X1 == TO_FM(' +OVERFLOW ')) THEN¬
! will return false, since the comparison routine cannot be sure that two¬
! different overflowed results would have been equal if the overflow threshold¬
! had been higher.¬
¬

! Function IS_OVERFLOW can be used to directly check whether a number is + or -¬
! overflow, so that is a safer test.¬
¬
! The FM warning message is written on unit KW, so in this test it appears on the¬
! screen and not in the output file.¬
¬
 CALL FM_SET(60)¬
¬
 X1 = TO_FM(1)¬
¬
 FMT = "(///' Sample 14. Exception handling.'//12X," // &¬
 "' Iterate exp(x) starting at 1.0 until overflow occurs.'//" // &¬
 "12X,' An FM warning message will be printed before the last iteration.')"¬
 WRITE (*,FMT)¬
 FMT = "(///' Sample 14. Exception handling.'//" // &¬
 "12X,' Iterate exp(x) starting at 1.0 until overflow occurs.')"¬
 WRITE (KOUT,FMT)¬
¬
 DO J = 1, 10¬
 X1 = EXP(X1)¬
 CALL FM_FORM('ES60.40',X1,ST1)¬
 WRITE (* ,"(/' Iteration',I3,5X,A)") J,TRIM(ST1)¬
 WRITE (KOUT,"(/' Iteration',I3,5X,A)") J,TRIM(ST1)¬
 IF (IS_OVERFLOW(X1)) EXIT¬
 ENDDO¬
¬
! Check that the last result was +overflow.¬
¬
 IF (IS_OVERFLOW(X1)) THEN¬
 WRITE (* ,"(/' Overflow was correctly detected.')")¬
 WRITE (KOUT,"(/' Overflow was correctly detected.')")¬
 ELSE¬
 NERROR = NERROR + 1¬
 WRITE (* ,"(/' Error in sample case number 14.'/)")¬
 WRITE (* ,"(/' Overflow was not correctly detected.')")¬
 WRITE (KOUT ,"(/' Error in sample case number 14.'/)")¬
 WRITE (KOUT ,"(/' Overflow was not correctly detected.')")¬
 ENDIF¬
¬
 IF (NERROR == 0) THEN¬
 WRITE (* ,"(//A/)") ' All results were ok -- no errors were found.'¬
 WRITE (KOUT,"(//A/)") ' All results were ok -- no errors were found.'¬
 ELSE¬
 WRITE (* ,"(//I3,A/)") NERROR,' error(s) found.'¬
 WRITE (KOUT,"(//I3,A/)") NERROR,' error(s) found.'¬
 ENDIF¬
¬
 STOP¬
 END PROGRAM TEST¬
¬
 SUBROUTINE PLAN_9(F,A,B,N,RESULT)¬
¬
! Sample subroutine usage for FM.¬
¬
! Integrate F(X) from A to B using N subintervals, and return the answer in RESULT.¬
¬
! This does numerical integration using a 9-point rule.¬
! It is not a very good way to do high-precision integration, but it is a short routine¬

! and can often get 20 to 30 digits if f(x) is well-behaved and the interval of integration¬
! is not too big.¬
¬
 USE FMZM¬
 IMPLICIT NONE¬
 TYPE (FM) :: A, B, RESULT¬
 TYPE (FM), SAVE :: H, H8, XJ¬
 TYPE (FM), EXTERNAL :: F¬
 INTEGER :: N, J¬
 INTENT (IN) :: N, A, B¬
 INTENT (INOUT) :: RESULT¬
¬
 H = (B - A)/N¬
 H8 = H/8¬
 RESULT = 0¬
 DO J = 1, N¬
 XJ = A + (J-1)*H¬
 RESULT = RESULT + 989*F(XJ) + 5888*F(XJ+ H8) - 928*F(XJ+2*H8) + &¬
 10496*F(XJ+3*H8) - 4540*F(XJ+4*H8) + 10496*F(XJ+5*H8) - &¬
 928*F(XJ+6*H8) + 5888*F(XJ+7*H8) + 989*F(XJ+8*H8)¬
 ENDDO¬
 RESULT = H*RESULT/28350¬
¬
 END SUBROUTINE PLAN_9¬
¬
 FUNCTION F(X) RESULT (RETURN_VALUE)¬
¬
! Sample function usage for FM.¬
¬
! The test function for the integration subroutine is 2*exp(-x**2)/sqrt(pi).¬
¬
 USE FMZM¬
 IMPLICIT NONE¬
 TYPE (FM) :: RETURN_VALUE, X¬
 TYPE (FM), SAVE :: PI¬
¬
! Compare the usage here with the SQRT(ACOS(TO_FM(-1))) usage in the gamma example¬
! in the main program. There pi was only used once, so ACOS(TO_FM(-1)) is more like¬
! what a non-multiple-precision program would do to get pi.¬
¬
! If we need pi in a function like F that will be called hundreds of times, the acos¬
! call will be done every time. Here, since the argument is -1, the acos routine will¬
! recognize it as a special case and return the saved value of pi without needlessly¬
! making the program slower. But if another formula were used, like pi = 6*asin(1/2),¬
! it would be better to call FM_PI, since pi would be computed only once and later calls¬
! just use the saved value of pi.¬
¬
! Another reason to call FM_PI instead of using a formula is that in case the calling¬
! program changed the trig function mode to degrees, instead of the default radians,¬
! then ACOS(TO_FM(-1)) would give 180, not pi.¬
¬
! For this case the 2/sqrt(pi) could have been factored out of the integral so pi would¬
! not be needed every time F is called, but it was left in to illustrate similar but¬
! more complicated situations.¬
¬
 CALL FM_PI(PI)¬
 RETURN_VALUE = 2*EXP(-X**2)/SQRT(PI)¬
¬

 END FUNCTION F¬

