Here is an infinite nested sequence of radicals.

To evaluate it, we can turn it into a recurrence relation:

.CCO:O

1/3
Tpyl = \/6 + (—7 - (3- xn)1/4>

The sum or product key can be used as a loop control to iterate the recurrence. Each term of the “sum

»

can update x, and keep the value in a register. At the end, we ignore the sum of the terms and just look at
the final z,,.

The main problem is in computing the cube roots, since the arguments are negative. For example, computing

(—8)'/3 by using the y* key to directly do a 1/3 power,
—8, enter, 1, enter, 3, /, y*

doesn’t work. We would want the cube root of —8 to be —2 for this calculation, but when the exponent is

not an integer, the calculator evaluates it as

yx — 7 In(y)

But y = —8 means In(y) is not a real number. Moving to the complex function screen doesn’t solve the

problem, since in complex mode we get the principal cube root of —8 in the first quadrant.
(-8)*=1+V3i

A solution that works for this recurrence is to see that whenever a cube root is computed, the argument is

: 1/3 _ 1/3
always negative, so we can use ¢ /° = — (—a) " .
£3: 1, func, chs, 1, enter, 3, /, y*, chs

Now define f1 to do one iteration of the recurrence. The previous xz,, will be in register 1. f1 will compute

ZTp+1 and put that back into register 1.
f1: 1, func, 1, rcl, chs, 3, +, /X, /X, chs, 7, —, 3, I, 6, +, /X, 1, sto

To apply the recurrence 10 times, first initialize zy = 0 in register 1, use the sum key, then recall x,,.
0, enter, 1, sto, 7, func, 1, enter, 10, enter, 1, enter, 1, sum, 1, rcl

giving 1.999999999999999999999981684391, so it seems the nested radical expression equals 2.



The {3 function above for the cube root assumed its input was negative. How could we generalize the cube
root to work for any input? An even better solution would be a function that computes f(x,p,q) = xP/4 for

any real x, where p and ¢ could be any integers.

Calc-50 is not designed for complicated programming. It doesn’t have explicit loops or if statements, but as

we did with the sum function to get a loop, we can sometimes use the select function like an if statement.

Define 3 to compute z/9 when p and ¢ are integers.

It will give 2P/ directly if = > 0.

It will give unknown if z < 0 and ¢ is even (in lowest terms of p/q).
It will give —(—2)P/? if z < 0 and ¢ is odd.

Use the select (sel) function, with £3 storing x in register 1, p in register 2, ¢ in register 3.
£3: 1, func, 3, sto, roll, 2, sto, roll, 1, sto, 0, enter, €99, e*, 7, func, 4, sel
f4: 1, func, 1, rcl, 2, rcl, 3, rcl, /, y*
f5: 2, func, 2, rcl, 3, rcl, ged, 4, sto, 2, rcl, 4, rcl, /, 2, sto, 3, rcl, 4, rcl, /, 3, sto, 6, f,
£6: 2, func, 3, rcl, 2, mod, 7, func, 0, enter, 0, enter, 7, sel
£7: 1, func, —1, /x
8: 1, func, 1, rcl, chs, 2, rcl, 3, rcl, /, y*, chs

f3 stores the input arguments x, p, q in registers 1,2,3, then calls f4 if x > 0 or 5 if x < 0.

“e99, e*” computes +overflow as the upper limit for the interval where f4 is called.
f4 computes xP/ 9, used when z > 0
5 reduces p/q to lowest terms by factoring out their ged, then calls £6
f6 calls {7 if ¢ is even, or {8 if ¢ is odd
{7 returns unknown (by computing /—1)

8 computes —(—z)P/4

Testing 3 for several different cases:

8, enter, 1, enter, 3, enter, 3, f, (—8)1/3 = —2.000000000000000000000000000000
8, enter, 1, enter, 3, enter, 3, fy (+8)1/3 = 2.000000000000000000000000000000
8, enter, 2, enter, 6, enter, 3, f, (—8)2/6 = —2,000000000000000000000000000000
—8, enter, 1, enter, 2, enter, 3, f, (—8)Y/2 = unknown
8, enter, 1, enter, 2, enter, 3, f, (+8)1/2 = 2.828427124746190097603377448419



