
¬
      program test¬
¬
!   This is a sample program using 14th order Runge Kutta to solve ordinary differential¬
!   equations (initial value problems) to high precision.¬
¬
!   Subroutine fm_rk14 uses a starting point a, stopping point b, and tolerance tol.¬
!   fm_rk14 calls fm_rk14_step for the individual steps, adjusting the step size along the¬
!   way to try to keep the distance between the approximate solution vector s1 and the true¬
!   solution less than tol.  tol should be no smaller than 1.0e-75.¬
¬
!   Subroutine fm_rk14_coeffs is called by fm_rk14_step to initialize the many coefficients¬
!   used to define the 14th order Runge Kutta formula.  They are defined with 85-digit¬
!   accuracy, so accuracy up to about 75 digits can be achieved by these routines.¬
¬
!   The speed of fm_rk14 drops quickly as the requested precision increases, since more¬
!   steps (with smaller stepsize) are needed to get from a to b, and also because higher¬
!   FM precision must be used.¬
¬
!   For a typical 2021 computer, here are the times for the third-order equation in case 3:¬
¬
!   tol     FM precision     time (seconds)¬
!   1e-20   30                0.07¬
!   1e-30   40                0.46¬
!   1e-40   50                2.90¬
!   1e-50   60               19.00¬
¬
!   Since rk14 has error o(h^14), the stepsize h needed for a given tol is of order tol^(1/14).¬
!   That gives a total number of steps proportional to tol^(-1/14) and means that decreasing¬
!   tol by a factor of 1e+10 will multiply the total number of steps required by about¬
!   1e-10^(-1/14) = 5.2.¬
¬
!   The actual time ratios in the table above are 6.6, 6.3, 6.6, slightly more than 5.2,¬
!   because the time for each step increases as FM precision goes up.¬
¬
¬
      use fmzm¬
      implicit none¬
¬
!             Set maximum_order here and in the subroutines to the highest order¬
!             differential equation to be solved.¬
¬
      integer, parameter :: maximum_order = 3¬
      integer :: n_function, n_order¬
      type (fm) :: a, b, err, s(maximum_order), s1(maximum_order), tol¬
      external :: fm_rk14_f¬
      real :: t1, t2¬
¬
!             Set the FM precision level to 40 significant digits for cases 1 through 3.¬
¬
      call fm_set(40)¬
¬
¬
!             We will use differential equations with known analytic solutions so we can check¬
!             the accuracy of the result.¬
¬
¬
¬



!             1.  First-order equation.¬
¬
!                 y' = -y + 2*sin(x),   y(0) = 0¬
¬
!                 The right-hand-side function is defined as function number 1¬
!                 in subroutine fm_rk14_f (at the end of this file).¬
¬
!                 Since this is a first-order equation, the "state" vector s is just y.¬
¬
!                 Set tol = 1e-30 and find y(5).¬
¬
¬
      call cpu_time(t1)¬
¬
      n_order = 1¬
      n_function = 1¬
      a = 0¬
      b = 5¬
      s(1) = 0¬
      tol = to_fm(' 1.0e-30 ')¬
¬
      call fm_rk14( a, b, n_order, fm_rk14_f, n_function, s, tol, s1 )¬
¬
      write (*,*) ' '¬
      write (*,*) ' Case 1.  y(5) ='¬
      call fm_print(s1(1))¬
      write (*,*) ' '¬
      err = abs( (sin(b) - cos(b) + exp(-b))  - s1(1) )¬
      write (*, "(a, es16.7)") '     Error in the computed solution = ', to_dp(err)¬
¬
¬
      call cpu_time(t2)¬
      write (*,*) ' '¬
      write (*, "(5x, a, es12.4, a, f8.2, a)") ' For tolerance = ', to_dp(tol),  &¬
                                               '   time = ', t2-t1, ' sec.'¬
      write (*,*) ' '¬
      write (*,*) ' '¬
¬
¬
¬
!             2.  Second-order equation.¬
¬
!                 y'' = -y' - exp(x)*y + sin(x) - exp(-x)*(sin(x) + cos(x)),¬
!                 y(0) = 0,  y'(0) = 1.¬
¬
!                 The right-hand-side function is defined as function number 2¬
!                 in subroutine fm_rk14_f (at the end of this file).¬
¬
!                 First reduce this equation to a system of first-order equations.¬
¬
!                 Let u = y'.  Then u' = y''.  Now for s = ( y, u ) the vector¬
!                 differential equation is¬
¬
!                 s' = ( y', u' ) = ( u, -u + exp(x)*y + sin(x) - exp(-x)*(sin(x) + cos(x)) )¬
!                 s(0) = ( y(0), u(0) ) = ( 0, 1 ).¬
¬
!                 Find y(2).¬
¬



¬
      call cpu_time(t1)¬
¬
      n_order = 2¬
      n_function = 2¬
      a = 0¬
      b = 2¬
      s(1:2) = (/ 0, 1 /)¬
      tol = to_fm(' 1.0e-30 ')¬
¬
      call fm_rk14( a, b, n_order, fm_rk14_f, n_function, s, tol, s1 )¬
¬
      write (*,*) ' '¬
      write (*,*) ' Case 2.  y(2) ='¬
      call fm_print(s1(1))¬
      write (*,*) "          y'(2) ="¬
      call fm_print(s1(2))¬
      write (*,*) ' '¬
      err = abs( (sin(b)*exp(-b)) - s1(1) )¬
      write (*, "(a, es16.7)") '     Error in the computed y(2) solution = ', to_dp(err)¬
¬
¬
      call cpu_time(t2)¬
      write (*,*) ' '¬
      write (*, "(5x, a, es12.4, a, f8.2, a)") ' For tolerance = ', to_dp(tol),  &¬
                                               '   time = ', t2-t1, ' sec.'¬
      write (*,*) ' '¬
      write (*,*) ' '¬
¬
¬
!             3.  Third-order equation.¬
¬
!                 y''' = -y'' -y' - y + ( ( -35x**3 + 2x**2 + 111x + 68 )*cos(6x) +¬
!                                         ( 210x**3 + 642x**2 + 618x + 186 )*sin(6x) ) / (1+x)**4¬
!                 y(0) = 1,  y'(0) = -1,  y''(0) = -34.¬
¬
!                 The right-hand-side function is defined as function number 3¬
!                 in subroutine fm_rk14_f (at the end of this file).¬
¬
!                 First reduce this equation to a system of first-order equations.¬
¬
!                 let u = y' and v = y''.  Then v' = y'''.  Now for s = ( y, u, v ) the vector¬
!                 differential equation is¬
¬
!                 s' = ( y', u', v' ) =¬
!                      ( u , v , -v - u - y +¬
!                                ( ( -35x**3 + 2x**2 + 111x + 68 )*cos(6x) +¬
!                                  ( 210x**3 + 642x**2 + 618x + 186 )*sin(6x) ) / (1+x)**4 )¬
!                 s(0) = ( y(0), u(0), v(0) ) = ( 1, -1, -34 ).¬
¬
!                 Find y(2).¬
¬
¬
      call cpu_time(t1)¬
¬
      n_order = 3¬
      n_function = 3¬
      a = 0¬



      b = 2¬
      s(1:3) = (/ 1, -1, -34 /)¬
      tol = to_fm(' 1.0e-30 ')¬
¬
      call fm_rk14( a, b, n_order, fm_rk14_f, n_function, s, tol, s1 )¬
¬
      write (*,*) ' '¬
      write (*,*) ' Case 3.  y(2) ='¬
      call fm_print(s1(1))¬
      write (*,*) "          y'(2) ="¬
      call fm_print(s1(2))¬
      write (*,*) "          y''(2) ="¬
      call fm_print(s1(3))¬
      write (*,*) ' '¬
      err = abs( (cos(6*b)/(b+1)) - s1(1) )¬
      write (*, "(a, es16.7)") '     Error in the computed y(2) solution = ', to_dp(err)¬
¬
¬
      call cpu_time(t2)¬
      write (*,*) ' '¬
      write (*, "(5x, a, es12.4, a, f8.2, a)") ' For tolerance = ', to_dp(tol),  &¬
                                               '   time = ', t2-t1, ' sec.'¬
      write (*,*) ' '¬
      write (*,*) ' '¬
¬
¬
¬
¬
!             4.  Solve case 3 again, this time asking for 20 digit accuracy.¬
!                 For this case we can lower the FM precision level to 30 digits.¬
¬
      call fm_set(30)¬
¬
      call cpu_time(t1)¬
¬
      n_order = 3¬
      n_function = 3¬
      a = 0¬
      b = 2¬
      s(1:3) = (/ 1, -1, -34 /)¬
      tol = to_fm(' 1.0e-20 ')¬
¬
      call fm_rk14( a, b, n_order, fm_rk14_f, n_function, s, tol, s1 )¬
¬
      write (*,*) ' '¬
      write (*,*) ' Case 4.  y(2) ='¬
      call fm_print(s1(1))¬
      write (*,*) "          y'(2) ="¬
      call fm_print(s1(2))¬
      write (*,*) "          y''(2) ="¬
      call fm_print(s1(3))¬
      write (*,*) ' '¬
      err = abs( (cos(6*b)/(b+1)) - s1(1) )¬
      write (*, "(a, es16.7)") '     Error in the computed y(2) solution = ', to_dp(err)¬
¬
¬
      call cpu_time(t2)¬
      write (*,*) ' '¬



      write (*, "(5x, a, es12.4, a, f8.2, a)") ' For tolerance = ', to_dp(tol),  &¬
                                               '   time = ', t2-t1, ' sec.'¬
      write (*,*) ' '¬
      write (*,*) ' '¬
¬
¬
¬
!             5.  Same as case 4, but use tol = 1.0e-40.¬
!                 The FM precision level should be set to at least 10 digits more than tol.¬
¬
      call fm_set(50)¬
¬
      call cpu_time(t1)¬
¬
      n_order = 3¬
      n_function = 3¬
      a = 0¬
      b = 2¬
      s(1:3) = (/ 1, -1, -34 /)¬
      tol = to_fm(' 1.0e-40 ')¬
¬
      call fm_rk14( a, b, n_order, fm_rk14_f, n_function, s, tol, s1 )¬
¬
      write (*,*) ' '¬
      write (*,*) ' Case 5.  y(2) ='¬
      call fm_print(s1(1))¬
      write (*,*) "          y'(2) ="¬
      call fm_print(s1(2))¬
      write (*,*) "          y''(2) ="¬
      call fm_print(s1(3))¬
      write (*,*) ' '¬
      err = abs( (cos(6*b)/(b+1)) - s1(1) )¬
      write (*, "(a, es16.7)") '     Error in the computed y(2) solution = ', to_dp(err)¬
¬
¬
      call cpu_time(t2)¬
      write (*,*) ' '¬
      write (*, "(5x, a, es12.4, a, f8.2, a)") ' For tolerance = ', to_dp(tol),  &¬
                                               '   time = ', t2-t1, ' sec.'¬
      write (*,*) ' '¬
      write (*,*) ' '¬
¬
¬
¬
!             6.  Same as case 4, but use tol = 1.0e-50.¬
¬
!                 The FM precision level should be set to at least 10 digits more than tol.¬
¬
¬
      call fm_set(60)¬
¬
      call cpu_time(t1)¬
¬
      n_order = 3¬
      n_function = 3¬
      a = 0¬
      b = 2¬
      s(1:3) = (/ 1, -1, -34 /)¬



      tol = to_fm(' 1.0e-50 ')¬
¬
      call fm_rk14( a, b, n_order, fm_rk14_f, n_function, s, tol, s1 )¬
¬
      write (*,*) ' '¬
      write (*,*) ' Case 6.  y(2) ='¬
      call fm_print(s1(1))¬
      write (*,*) "          y'(2) ="¬
      call fm_print(s1(2))¬
      write (*,*) "          y''(2) ="¬
      call fm_print(s1(3))¬
      write (*,*) ' '¬
      err = abs( (cos(6*b)/(b+1)) - s1(1) )¬
      write (*, "(a, es16.7)") '     Error in the computed y(2) solution = ', to_dp(err)¬
¬
      call cpu_time(t2)¬
      write (*,*) ' '¬
      write (*, "(5x, a, es12.4, a, f8.2, a)") ' For tolerance = ', to_dp(tol),  &¬
                                               '   time = ', t2-t1, ' sec.'¬
      write (*,*) ' '¬
      write (*,*) ' '¬
¬
      stop¬
      end program test¬
¬
¬
      subroutine fm_rk14_f(n_order, n_function, x, s, rhs)¬
¬
!  Compute the right-hand-side function for the vector first-order differential equation¬
!  s' = f(x, s).¬
¬
!  n_order is the order of the differential equation.  After reducing the equation to¬
!          a first-order vector d.e., n_order is the length of vectors s and rhs.¬
!          (n_order is unused in this sample version)¬
¬
!  rhs is returned as the right-hand-side vector function of the differential equation,¬
!  with s as the input vector:  rhs = f(x, s).¬
¬
!  n_function is the function to be evaluated, for cases where a program may solve¬
!             several different differential equations.¬
¬
¬
      use fmzm¬
      implicit none¬
¬
      integer, parameter :: maximum_order = 3¬
      integer :: n_order, n_function¬
      type (fm) :: x, s(maximum_order), rhs(maximum_order)¬
      type (fm), save :: t1, t2, t3¬
      intent (in) :: n_order, n_function, x, s¬
      intent (inout) :: rhs¬
¬
      if (n_function == 1) then¬
¬
!             y' = -y + 2*sin(x)¬
¬
          rhs(1) = -s(1) + 2*sin(x)¬
      else if (n_function == 2) then¬



¬
!             y'' = -y' - exp(x)*y + sin(x) - exp(-x)*(sin(x) + cos(x))¬
¬
          rhs(1) = s(2)¬
¬
!             Note about code-tuning.¬
!             This is the straight-forward way of coding rhs(2) from the differential equation:¬
¬
!         rhs(2) = -s(2) - exp(x)*s(1) + sin(x) - exp(-x)*(sin(x) + cos(x))¬
¬
!             Using the code above, case 2 in the main program ran in 0.48 seconds.¬
¬
!             We can speed this up by computing sin(x) once instead of twice for each function¬
!             evaluation.  Also, doing exp(-x) as 1/exp(x) can save an exponential.¬
!             More time can be saved by using subroutine fm_cos_sin, which returns both¬
!             cos(x) and sin(x) in one call.  fm_cos_sin computes one of the trig functions,¬
!             and then gets the other quickly using an identity.¬
¬
!             Three local variables, t1, t2, t3, are used to save exp(x), cos(x), sin(x).¬
!             The code below then ran case 2 in 0.27 seconds.¬
¬
          t1 = exp(x)¬
          call fm_cos_sin(x, t2, t3)¬
          rhs(2) = -s(2) - t1*s(1) + t3 - (t3 + t2) / t1¬
      else if (n_function == 3) then¬
¬
!             y''' = -y'' -y' - y + ( ( -35x**3 + 2x**2 + 111x + 68 )*cos(6x) +¬
!                                     ( 210x**3 + 642x**2 + 618x + 186 )*sin(6x) ) / (1+x)**4¬
¬
          rhs(1) = s(2)¬
          rhs(2) = s(3)¬
¬
!             More code-tuning.¬
!             Original code in case 3:  0.61 seconds.¬
¬
!         rhs(3) = -s(3) - s(2) - s(1)  +                                           &¬
!                  ( ( -35*x**3 + 2*x**2 + 111*x + 68 )*cos(6*x) +                  &¬
!                    ( 210*x**3 + 642*x**2 + 618*x + 186 )*sin(6*x) )  / (1+x)**4¬
¬
!             Use fm_cos_sin as in function 2 above for the trig functions:  0.50 seconds.¬
¬
!         call fm_cos_sin(6*x, t2, t3)¬
!         rhs(3) = -s(3) - s(2) - s(1)  +                                     &¬
!                  ( ( -35*x**3 + 2*x**2 + 111*x + 68 )*t2 +                  &¬
!                    ( 210*x**3 + 642*x**2 + 618*x + 186 )*t3 )  / (1+x)**4¬
¬
!             Use Horner's rule for the polynomials:  0.47 seconds.¬
¬
          call fm_cos_sin(6*x, t2, t3)¬
          rhs(3) = -s(3) - s(2) - s(1)  +                                     &¬
                   ( ((( -35*x +   2)*x + 111)*x +  68 )*t2 +                 &¬
                     ((( 210*x + 642)*x + 618)*x + 186 )*t3 )  / (1+x)**4¬
¬
      else¬
          rhs = s(1)¬
      endif¬
¬
      end subroutine fm_rk14_f¬


