
¬
 program test¬
¬
! This is a sample program using 14th order Runge Kutta to solve ordinary differential¬
! equations (initial value problems) to high precision.¬
¬
! Subroutine fm_rk14 uses a starting point a, stopping point b, and tolerance tol.¬
! fm_rk14 calls fm_rk14_step for the individual steps, adjusting the step size along the¬
! way to try to keep the distance between the approximate solution vector s1 and the true¬
! solution less than tol. tol should be no smaller than 1.0e-75.¬
¬
! Subroutine fm_rk14_coeffs is called by fm_rk14_step to initialize the many coefficients¬
! used to define the 14th order Runge Kutta formula. They are defined with 85-digit¬
! accuracy, so accuracy up to about 75 digits can be achieved by these routines.¬
¬
! The speed of fm_rk14 drops quickly as the requested precision increases, since more¬
! steps (with smaller stepsize) are needed to get from a to b, and also because higher¬
! FM precision must be used.¬
¬
! For a typical 2021 computer, here are the times for the third-order equation in case 3:¬
¬
! tol FM precision time (seconds)¬
! 1e-20 30 0.07¬
! 1e-30 40 0.46¬
! 1e-40 50 2.90¬
! 1e-50 60 19.00¬
¬
! Since rk14 has error o(h^14), the stepsize h needed for a given tol is of order tol^(1/14).¬
! That gives a total number of steps proportional to tol^(-1/14) and means that decreasing¬
! tol by a factor of 1e+10 will multiply the total number of steps required by about¬
! 1e-10^(-1/14) = 5.2.¬
¬
! The actual time ratios in the table above are 6.6, 6.3, 6.6, slightly more than 5.2,¬
! because the time for each step increases as FM precision goes up.¬
¬
¬
 use fmzm¬
 implicit none¬
¬
! Set maximum_order here and in the subroutines to the highest order¬
! differential equation to be solved.¬
¬
 integer, parameter :: maximum_order = 3¬
 integer :: n_function, n_order¬
 type (fm) :: a, b, err, s(maximum_order), s1(maximum_order), tol¬
 external :: fm_rk14_f¬
 real :: t1, t2¬
¬
! Set the FM precision level to 40 significant digits for cases 1 through 3.¬
¬
 call fm_set(40)¬
¬
¬
! We will use differential equations with known analytic solutions so we can check¬
! the accuracy of the result.¬
¬
¬
¬

! 1. First-order equation.¬
¬
! y' = -y + 2*sin(x), y(0) = 0¬
¬
! The right-hand-side function is defined as function number 1¬
! in subroutine fm_rk14_f (at the end of this file).¬
¬
! Since this is a first-order equation, the "state" vector s is just y.¬
¬
! Set tol = 1e-30 and find y(5).¬
¬
¬
 call cpu_time(t1)¬
¬
 n_order = 1¬
 n_function = 1¬
 a = 0¬
 b = 5¬
 s(1) = 0¬
 tol = to_fm(' 1.0e-30 ')¬
¬
 call fm_rk14(a, b, n_order, fm_rk14_f, n_function, s, tol, s1)¬
¬
 write (*,*) ' '¬
 write (*,*) ' Case 1. y(5) ='¬
 call fm_print(s1(1))¬
 write (*,*) ' '¬
 err = abs((sin(b) - cos(b) + exp(-b)) - s1(1))¬
 write (*, "(a, es16.7)") ' Error in the computed solution = ', to_dp(err)¬
¬
¬
 call cpu_time(t2)¬
 write (*,*) ' '¬
 write (*, "(5x, a, es12.4, a, f8.2, a)") ' For tolerance = ', to_dp(tol), &¬
 ' time = ', t2-t1, ' sec.'¬
 write (*,*) ' '¬
 write (*,*) ' '¬
¬
¬
¬
! 2. Second-order equation.¬
¬
! y'' = -y' - exp(x)*y + sin(x) - exp(-x)*(sin(x) + cos(x)),¬
! y(0) = 0, y'(0) = 1.¬
¬
! The right-hand-side function is defined as function number 2¬
! in subroutine fm_rk14_f (at the end of this file).¬
¬
! First reduce this equation to a system of first-order equations.¬
¬
! Let u = y'. Then u' = y''. Now for s = (y, u) the vector¬
! differential equation is¬
¬
! s' = (y', u') = (u, -u + exp(x)*y + sin(x) - exp(-x)*(sin(x) + cos(x)))¬
! s(0) = (y(0), u(0)) = (0, 1).¬
¬
! Find y(2).¬
¬

¬
 call cpu_time(t1)¬
¬
 n_order = 2¬
 n_function = 2¬
 a = 0¬
 b = 2¬
 s(1:2) = (/ 0, 1 /)¬
 tol = to_fm(' 1.0e-30 ')¬
¬
 call fm_rk14(a, b, n_order, fm_rk14_f, n_function, s, tol, s1)¬
¬
 write (*,*) ' '¬
 write (*,*) ' Case 2. y(2) ='¬
 call fm_print(s1(1))¬
 write (*,*) " y'(2) ="¬
 call fm_print(s1(2))¬
 write (*,*) ' '¬
 err = abs((sin(b)*exp(-b)) - s1(1))¬
 write (*, "(a, es16.7)") ' Error in the computed y(2) solution = ', to_dp(err)¬
¬
¬
 call cpu_time(t2)¬
 write (*,*) ' '¬
 write (*, "(5x, a, es12.4, a, f8.2, a)") ' For tolerance = ', to_dp(tol), &¬
 ' time = ', t2-t1, ' sec.'¬
 write (*,*) ' '¬
 write (*,*) ' '¬
¬
¬
! 3. Third-order equation.¬
¬
! y''' = -y'' -y' - y + ((-35x**3 + 2x**2 + 111x + 68)*cos(6x) +¬
! (210x**3 + 642x**2 + 618x + 186)*sin(6x)) / (1+x)**4¬
! y(0) = 1, y'(0) = -1, y''(0) = -34.¬
¬
! The right-hand-side function is defined as function number 3¬
! in subroutine fm_rk14_f (at the end of this file).¬
¬
! First reduce this equation to a system of first-order equations.¬
¬
! let u = y' and v = y''. Then v' = y'''. Now for s = (y, u, v) the vector¬
! differential equation is¬
¬
! s' = (y', u', v') =¬
! (u , v , -v - u - y +¬
! ((-35x**3 + 2x**2 + 111x + 68)*cos(6x) +¬
! (210x**3 + 642x**2 + 618x + 186)*sin(6x)) / (1+x)**4)¬
! s(0) = (y(0), u(0), v(0)) = (1, -1, -34).¬
¬
! Find y(2).¬
¬
¬
 call cpu_time(t1)¬
¬
 n_order = 3¬
 n_function = 3¬
 a = 0¬

 b = 2¬
 s(1:3) = (/ 1, -1, -34 /)¬
 tol = to_fm(' 1.0e-30 ')¬
¬
 call fm_rk14(a, b, n_order, fm_rk14_f, n_function, s, tol, s1)¬
¬
 write (*,*) ' '¬
 write (*,*) ' Case 3. y(2) ='¬
 call fm_print(s1(1))¬
 write (*,*) " y'(2) ="¬
 call fm_print(s1(2))¬
 write (*,*) " y''(2) ="¬
 call fm_print(s1(3))¬
 write (*,*) ' '¬
 err = abs((cos(6*b)/(b+1)) - s1(1))¬
 write (*, "(a, es16.7)") ' Error in the computed y(2) solution = ', to_dp(err)¬
¬
¬
 call cpu_time(t2)¬
 write (*,*) ' '¬
 write (*, "(5x, a, es12.4, a, f8.2, a)") ' For tolerance = ', to_dp(tol), &¬
 ' time = ', t2-t1, ' sec.'¬
 write (*,*) ' '¬
 write (*,*) ' '¬
¬
¬
¬
¬
! 4. Solve case 3 again, this time asking for 20 digit accuracy.¬
! For this case we can lower the FM precision level to 30 digits.¬
¬
 call fm_set(30)¬
¬
 call cpu_time(t1)¬
¬
 n_order = 3¬
 n_function = 3¬
 a = 0¬
 b = 2¬
 s(1:3) = (/ 1, -1, -34 /)¬
 tol = to_fm(' 1.0e-20 ')¬
¬
 call fm_rk14(a, b, n_order, fm_rk14_f, n_function, s, tol, s1)¬
¬
 write (*,*) ' '¬
 write (*,*) ' Case 4. y(2) ='¬
 call fm_print(s1(1))¬
 write (*,*) " y'(2) ="¬
 call fm_print(s1(2))¬
 write (*,*) " y''(2) ="¬
 call fm_print(s1(3))¬
 write (*,*) ' '¬
 err = abs((cos(6*b)/(b+1)) - s1(1))¬
 write (*, "(a, es16.7)") ' Error in the computed y(2) solution = ', to_dp(err)¬
¬
¬
 call cpu_time(t2)¬
 write (*,*) ' '¬

 write (*, "(5x, a, es12.4, a, f8.2, a)") ' For tolerance = ', to_dp(tol), &¬
 ' time = ', t2-t1, ' sec.'¬
 write (*,*) ' '¬
 write (*,*) ' '¬
¬
¬
¬
! 5. Same as case 4, but use tol = 1.0e-40.¬
! The FM precision level should be set to at least 10 digits more than tol.¬
¬
 call fm_set(50)¬
¬
 call cpu_time(t1)¬
¬
 n_order = 3¬
 n_function = 3¬
 a = 0¬
 b = 2¬
 s(1:3) = (/ 1, -1, -34 /)¬
 tol = to_fm(' 1.0e-40 ')¬
¬
 call fm_rk14(a, b, n_order, fm_rk14_f, n_function, s, tol, s1)¬
¬
 write (*,*) ' '¬
 write (*,*) ' Case 5. y(2) ='¬
 call fm_print(s1(1))¬
 write (*,*) " y'(2) ="¬
 call fm_print(s1(2))¬
 write (*,*) " y''(2) ="¬
 call fm_print(s1(3))¬
 write (*,*) ' '¬
 err = abs((cos(6*b)/(b+1)) - s1(1))¬
 write (*, "(a, es16.7)") ' Error in the computed y(2) solution = ', to_dp(err)¬
¬
¬
 call cpu_time(t2)¬
 write (*,*) ' '¬
 write (*, "(5x, a, es12.4, a, f8.2, a)") ' For tolerance = ', to_dp(tol), &¬
 ' time = ', t2-t1, ' sec.'¬
 write (*,*) ' '¬
 write (*,*) ' '¬
¬
¬
¬
! 6. Same as case 4, but use tol = 1.0e-50.¬
¬
! The FM precision level should be set to at least 10 digits more than tol.¬
¬
¬
 call fm_set(60)¬
¬
 call cpu_time(t1)¬
¬
 n_order = 3¬
 n_function = 3¬
 a = 0¬
 b = 2¬
 s(1:3) = (/ 1, -1, -34 /)¬

 tol = to_fm(' 1.0e-50 ')¬
¬
 call fm_rk14(a, b, n_order, fm_rk14_f, n_function, s, tol, s1)¬
¬
 write (*,*) ' '¬
 write (*,*) ' Case 6. y(2) ='¬
 call fm_print(s1(1))¬
 write (*,*) " y'(2) ="¬
 call fm_print(s1(2))¬
 write (*,*) " y''(2) ="¬
 call fm_print(s1(3))¬
 write (*,*) ' '¬
 err = abs((cos(6*b)/(b+1)) - s1(1))¬
 write (*, "(a, es16.7)") ' Error in the computed y(2) solution = ', to_dp(err)¬
¬
 call cpu_time(t2)¬
 write (*,*) ' '¬
 write (*, "(5x, a, es12.4, a, f8.2, a)") ' For tolerance = ', to_dp(tol), &¬
 ' time = ', t2-t1, ' sec.'¬
 write (*,*) ' '¬
 write (*,*) ' '¬
¬
 stop¬
 end program test¬
¬
¬
 subroutine fm_rk14_f(n_order, n_function, x, s, rhs)¬
¬
! Compute the right-hand-side function for the vector first-order differential equation¬
! s' = f(x, s).¬
¬
! n_order is the order of the differential equation. After reducing the equation to¬
! a first-order vector d.e., n_order is the length of vectors s and rhs.¬
! (n_order is unused in this sample version)¬
¬
! rhs is returned as the right-hand-side vector function of the differential equation,¬
! with s as the input vector: rhs = f(x, s).¬
¬
! n_function is the function to be evaluated, for cases where a program may solve¬
! several different differential equations.¬
¬
¬
 use fmzm¬
 implicit none¬
¬
 integer, parameter :: maximum_order = 3¬
 integer :: n_order, n_function¬
 type (fm) :: x, s(maximum_order), rhs(maximum_order)¬
 type (fm), save :: t1, t2, t3¬
 intent (in) :: n_order, n_function, x, s¬
 intent (inout) :: rhs¬
¬
 if (n_function == 1) then¬
¬
! y' = -y + 2*sin(x)¬
¬
 rhs(1) = -s(1) + 2*sin(x)¬
 else if (n_function == 2) then¬

¬
! y'' = -y' - exp(x)*y + sin(x) - exp(-x)*(sin(x) + cos(x))¬
¬
 rhs(1) = s(2)¬
¬
! Note about code-tuning.¬
! This is the straight-forward way of coding rhs(2) from the differential equation:¬
¬
! rhs(2) = -s(2) - exp(x)*s(1) + sin(x) - exp(-x)*(sin(x) + cos(x))¬
¬
! Using the code above, case 2 in the main program ran in 0.48 seconds.¬
¬
! We can speed this up by computing sin(x) once instead of twice for each function¬
! evaluation. Also, doing exp(-x) as 1/exp(x) can save an exponential.¬
! More time can be saved by using subroutine fm_cos_sin, which returns both¬
! cos(x) and sin(x) in one call. fm_cos_sin computes one of the trig functions,¬
! and then gets the other quickly using an identity.¬
¬
! Three local variables, t1, t2, t3, are used to save exp(x), cos(x), sin(x).¬
! The code below then ran case 2 in 0.27 seconds.¬
¬
 t1 = exp(x)¬
 call fm_cos_sin(x, t2, t3)¬
 rhs(2) = -s(2) - t1*s(1) + t3 - (t3 + t2) / t1¬
 else if (n_function == 3) then¬
¬
! y''' = -y'' -y' - y + ((-35x**3 + 2x**2 + 111x + 68)*cos(6x) +¬
! (210x**3 + 642x**2 + 618x + 186)*sin(6x)) / (1+x)**4¬
¬
 rhs(1) = s(2)¬
 rhs(2) = s(3)¬
¬
! More code-tuning.¬
! Original code in case 3: 0.61 seconds.¬
¬
! rhs(3) = -s(3) - s(2) - s(1) + &¬
! ((-35*x**3 + 2*x**2 + 111*x + 68)*cos(6*x) + &¬
! (210*x**3 + 642*x**2 + 618*x + 186)*sin(6*x)) / (1+x)**4¬
¬
! Use fm_cos_sin as in function 2 above for the trig functions: 0.50 seconds.¬
¬
! call fm_cos_sin(6*x, t2, t3)¬
! rhs(3) = -s(3) - s(2) - s(1) + &¬
! ((-35*x**3 + 2*x**2 + 111*x + 68)*t2 + &¬
! (210*x**3 + 642*x**2 + 618*x + 186)*t3) / (1+x)**4¬
¬
! Use Horner's rule for the polynomials: 0.47 seconds.¬
¬
 call fm_cos_sin(6*x, t2, t3)¬
 rhs(3) = -s(3) - s(2) - s(1) + &¬
 ((((-35*x + 2)*x + 111)*x + 68)*t2 + &¬
 (((210*x + 642)*x + 618)*x + 186)*t3) / (1+x)**4¬
¬
 else¬
 rhs = s(1)¬
 endif¬
¬
 end subroutine fm_rk14_f¬

