program test

This is a sample program using 14th order Runge Kutta to solve ordinary differential
equations (initial value problems) to high precision.

Subroutine fm_rkl4 uses a starting point a, stopping point b, and tolerance tol.
fm_rk14 calls fm_rkl4_step for the individual steps, adjusting the step size along the
way to try to keep the distance between the approximate solution vector sl and the true
solution less than tol. tol should be no smaller than 1.0e-75.

Subroutine fm_rkl4_coeffs is called by fm_rkl4_step to initialize the many coefficients
used to define the 14th order Runge Kutta formula. They are defined with 85-digit
accuracy, so accuracy up to about 75 digits can be achieved by these routines.

The speed of fm_rkl4 drops quickly as the requested precision increases, since more
steps (with smaller stepsize) are needed to get from a to b, and also because higher

FM precision must be used.

For a typical 2021 computer, here are the times for the third-order equation in case 3:

tol FM precision time (seconds)
le-20 30 0.07
le-30 40 0.46
le-40 50 2.90
le-50 60 19.00

Since rk14 has error o(hAl4), the stepsize h needed for a given tol is of order tolA(1/14).
That gives a total number of steps proportional to tolA(-1/14) and means that decreasing
tol by a factor of le+1@ will multiply the total number of steps required by about
le-101A(-1/14) = 5.2.

The actual time ratios in the table above are 6.6, 6.3, 6.6, slightly more than 5.2,
because the time for each step increases as FM precision goes up.
use fmzm

implicit none

Set maximum_order here and in the subroutines to the highest order
differential equation to be solved.

integer, parameter :: maximum_order = 3
integer :: n_function, n_order
type (fm) :: a, b, err, s(maximum_order), sl(maximum_order), tol

external :: fm_rk14_f
real :: tl1, t2

Set the FM precision level to 4@ significant digits for cases 1 through 3.

call fm_set(40)

We will use differential equations with known analytic solutions so we can check
the accuracy of the result.



1. First-order equation.
y' = -y + 2*¥sin(x), y(@) = 0

The right-hand-side function is defined as function number 1
in subroutine fm_rkl4_f (at the end of this file).

Since this is a first-order equation, the "state" vector s is just y.

Set tol = 1e-30 and find y(5).

call cpu_time(tl)

n_order =1
n_function = 1

a=2~0
b=5
s(1) =0

tol = to_fm(' 1.0e-30 ")
call fm_rk14C a, b, n_order, fm_rkl4_f, n_function, s, tol, sl )

write (*,*) ' '

write (*,*) ' Case 1. y(5) ='

call fm_print(s1(1))

write (*,*) ' '

err = absC (sin(b) - cos(b) + exp(-b)) - s1(1) )

write (*, "(a, esl6.7)") ' Error in the computed solution = ', to_dp(err)

call cpu_time(t2)
write (*,*) ' '
write (*, "(5x, a, esl2.4, a, 8.2, a)") ' For tolerance = ', to_dp(tol), &

" time = ', t2-t1, ' sec.'
write (*,*) ' '
write (*,*) ' '
2. Second-order equation.
y'' = -y' - exp(O*y + sin(x) - exp(-x)*(sin(x) + cos(x)),

y(@) =0, y'(@ =1.

The right-hand-side function is defined as function number 2
in subroutine fm_rkl4_f (at the end of this file).

First reduce this equation to a system of first-order equations.

Let u=y'. Thenu' =y
differential equation is

Now for s = ( y, u ) the vector

s' Cy', u" ) =Cu, -u+ exp(xX*y + sin(x) - exp(-x)*(sin(x) + cos(x)) )
= (Cy(@, u@ >=C00, 1).

Find y(2).



call cpu_time(tl)

n_order = 2

n_function = 2

a=2~0

b=2

s(1:2) =/ 0, 17)

tol = to_fm(' 1.0e-30 ")

call fm_rk14C a, b, n_order, fm_rkl4_f, n_function, s, tol, sl )

write (*,*) ' '

write (*,*) ' Case 2. y(2) ='

call fm_print(s1(1))

write (*,*) " y'(2) ="

call fm_print(s1(2))

write (*,*) ' '

err = absC (sin(b)*exp(-b)) - s1(1) )

write (*, "(a, esl6.7)") ' Error in the computed y(2) solution = ', to_dp(err)

call cpu_time(t2)
write (*,*) ' '
write (*, "(5x, a, esl2.4, a, f8.2, a)") ' For tolerance = ', to_dp(tol), &

! time = ', t2-tl1, ' sec.’
write (*,*) ' '
write (*,*) ' '
3. Third-order equation.
y''"' = —y't -y -y + ((C -35x**3 4+ 2x**2 + 111x + 68 )*cos(bx) +

( 210x**3 + 642x**2 + 618x + 186 )*sin(6x) ) / (L+x)**4

y(@) =1, y'(0) = -1, y''(0) = -34.

The right-hand-side function is defined as function number 3
in subroutine fm_rkl1l4_f (at the end of this file).

First reduce this equation to a system of first-order equations.

letu=y"'and v=y'". Then v' =y . Now for s = Cy, u, v ) the vector
differential equation is

5'=()/', u',v'):
Cu,v, -v-u-y=+
C C -35x**3 + 2x**2 + 111x + 68 )*cos(bx) +
( 210x**3 + 642x**2 + 618x + 186 )*sin(6x) ) / (1+x)**4 )

s(@) = Cy(@, u(@, v(@ > =C1, -1, -34 ).

Find y(2).

call cpu_time(tl)

n_order = 3
n_function = 3
a=2~0



b=2
s(1:3) =/ 1, -1, -34 /)
tol = to_fm(' 1.0e-30 ")

call fm_rk14(C a, b, n_order, fm_rkl4_f, n_function, s, tol, sl )
write (*,*) ' '

write (*,*) ' Case 3. y(2) ='
call fm_print(s1(1))

write (*,*) " y'(2) ="
call fm_print(s1(2))
write (*,*) " y''(2) ="

call fm_print(s1(3))

write (*,*) ' '

err = abs( (cos(6*b)/(b+1)) - s1(1) )

write (*, "(a, esl6.7)") ' Error in the computed y(2) solution = ', to_dp(err)

call cpu_time(t2)

write (*,*) ' '

write (*, "(5x, a, esl2.4, a, 8.2, a)") ' For tolerance = ', to_dp(tol), &
! time = ', t2-tl1, ' sec.’

write (*,*) ' '

write (*,*) ' '

4. Solve case 3 again, this time asking for 20 digit accuracy.
For this case we can lower the FM precision level to 30 digits.

call fm_set(30)
call cpu_time(tl)

n_order = 3

n_function = 3

a==0

b=2

s(1:3) =/ 1, -1, -34 /)
tol = to_fm(' 1.0e-20 ")

call fm_rk14(C a, b, n_order, fm_rkl4_f, n_function, s, tol, sl )
write (*,*) ' '

write (*,*) ' Case 4. y(2) ='
call fm_print(s1(1))

write (*,*) " y'(2) ="
call fm_print(s1(2))
Wr‘ite (*’*) " yl 1(2) =ll

call fm_print(s1(3))

write (*,*) ' '

err = abs( (cos(6*b)/(b+1)) - s1(1) )

write (*, "(a, esl6.7)") ' Error in the computed y(2) solution = ', to_dp(err)

call cpu_time(t2)
write (*,*) ' '



write (*, "(5x, a, esl2.4, a, 8.2, a)") ' For tolerance = ", to_dp(tol), &
! time = ', t2-tl, ' sec.'

write (*,*) " '

write (*,*) ' '

5. Same as case 4, but use tol = 1.0e-40.
The FM precision level should be set to at least 10 digits more than tol.

call fm_set(50)
call cpu_time(tl)

n_order = 3

n_function = 3

a==0

b=2

s(1:3) =/ 1, -1, -34 /)
tol = to_fm(' 1.0e-40 ")

call fm_rk14C a, b, n_order, fm_rkl4_f, n_function, s, tol, sl )
write (*,*) ' '

write (*,*) ' Case 5. y(2) ='
call fm_print(s1(1))

write (*,*) " y'(@2) ="
call fm_print(s1(2))
write (*,*) " y''(2) ="

call fm_print(s1(3))

write (*,*) ' '

err = abs( (cos(6*b)/(b+1)) - s1(1) )

write (*, "(a, esl6.7)") ' Error in the computed y(2) solution = ", to_dp(err)

call cpu_time(t2)

write (*,*) ' '

write (*, "(5x, a, esl2.4, a, f8.2, a)") ' For tolerance = ', to_dp(tol), &
" time = ', t2-t1, ' sec.'

write (*,*) ' '

write (*,*) ' '

6. Same as case 4, but use tol = 1.0e-50.

The FM precision level should be set to at least 10 digits more than tol.

call fm_set(60)
call cpu_time(tl)

n_order = 3

n_function = 3

a==0

b=2

s(1:3) = (/ 1, -1, =34 /)



tol = to_fm(' 1.0e-50 ")
call fm_rk14C a, b, n_order, fm_rk1l4_f, n_function, s, tol, sl )
write (*,*) ' '

write (*,*) ' Case 6. y(2) ='
call fm_print(s1(1))

write (*,*) " y'(2) ="
call fm_print(s1(2))
write (*,*) " y''(2) ="

call fm_print(s1(3))

write (*,*) ' '

err = abs( (cos(6*b)/(b+1)) - s1(1) )

write (*, "(a, esl6.7)") ' Error in the computed y(2) solution = ', to_dp(err)

call cpu_time(t2)

write (*,*) ' '

write (*, "(5x, a, esl2.4, a, 8.2, a)") ' For tolerance = ', to_dp(tol), &
" time = ', t2-t1, ' sec.'

write (*,*) ' '

write (*,*) ' '

stop
end program test
subroutine fm_rkl4_f(n_order, n_function, x, s, rhs)

Compute the right-hand-side function for the vector first-order differential equation
s' = f(x, s).

n_order is the order of the differential equation. After reducing the equation to
a first-order vector d.e., n_order is the length of vectors s and rhs.
(n_order 1is unused in this sample version)

rhs is returned as the right-hand-side vector function of the differential equation,
with s as the input vector: rhs = f(x, s).

n_function is the function to be evaluated, for cases where a program may solve

several different differential equations.

use fmzm
implicit none

integer, parameter :: maximum_order = 3

integer :: n_order, n_function

type (fm) :: x, s(maximum_order), rhs(maximum_order)
type (fm), save :: tl1, t2, t3

intent (in) :: n_order, n_function, x, s

intent (inout) :: rhs

if (n_function == 1) then

y -y + 2*¥sin(x)

rhs(l) = -s(1) + 2*sin(x)
else if (n_function == 2) then



y'' = -y' - exp(X)*y + sin(x) - exp(-x)*(sin(x) + cos(x))
rhs(1) = s(2)

Note about code-tuning.
This is the straight-forward way of coding rhs(2) from the differential equation:

rhs(2) = -s(2) - exp(x)*s(1) + sin(x) - exp(-x)*(sin(x) + cos(x))
Using the code above, case 2 in the main program ran in 0.48 seconds.

We can speed this up by computing sin(x) once instead of twice for each function
evaluation. Also, doing exp(-x) as 1/exp(x) can save an exponential.

More time can be saved by using subroutine fm_cos_sin, which returns both

cos(x) and sin(x) in one call. fm_cos_sin computes one of the trig functions,
and then gets the other quickly using an identity.

Three local variables, tl, t2, t3, are used to save exp(x), cos(x), sin(x).
The code below then ran case 2 in 0.27 seconds.

tl = exp(x)

call fm_cos_sin(x, t2, t3)

rhs(2) = -s(2) - t1*s(1) + t3 - (t3 + t2) / t1
else if (n_function == 3) then

y''"" = -y"" -y" -y + ( C -35x**3 + 2x*¥*2 + 111x + 68 )*cos(bx) +
( 210x**3 + ©642x**2 + 618x + 186 )*sin(ox) ) / (1+x)**4

rhs(1l) = s(2)
rhs(2) = s(3)

More code-tuning.
Original code in case 3: 0.61 seconds.

rhs(3) = -s(3) - s(2) - s(1) +
( ( -35*x**3 4 2¥x**2 4 111*x + 68 )*cos(6*x) + &
( 210*x**3 4+ 642*x**2 + 618*x + 186 )*sin(6*x) ) / (1+x)**4

e

Use fm_cos_sin as in function 2 above for the trig functions: .50 seconds.

call fm_cos_sin(6*x, t2, t3)
rhs(3) = -s(3) - s(2) - s(1) + &
C ( -35%x**3 + 2%x**2 4+ 111*x + 68 )*t2 + &
( 210*x**3 + 642*x**2 + 618*x + 186 )*t3 ) / (1+x)**4

Use Horner's rule for the polynomials: .47 seconds.

call fm_cos_sin(6*x, t2, t3)
rhs(3) = -s(3) - s(2) - s(1) + &
C CCC -35*x +  2)* + 111)*x + 68 )*t2 + &
(CC 210*x + 642)*x + 618)*x + 186 )*t3 ) / (L+x)**4

else
rhs = s(1)
endif

end subroutine fm_rkl4_f



