
¬
 program test¬
 use fmzm¬
 implicit none¬
¬
! Least squares fit for the coefficients in the asymptotic series for the j-th harmonic number.¬
¬
! H(j) = 1 + 1/2 + 1/3 + ... + 1/j defines the j-th harmonic number.¬
¬
! Find an approximation to H(j) of the form:¬
¬
! ln(j) + c(1) + c(2)/j + ... + c(k)/j**(k-1)¬
¬
! Integrating 1/x from 1 to j gives ln(j) as a first approximation, and we generate n data¬
! points (x(i), y(i)) where x(i) is j and y(i) is H(j) for various j values. Then we do a¬
! least squares fit of the model function c(1) + c(2)/j + ... + c(k)/j**(k-1) to the data¬
! (x(i), y(i)-ln(i)).¬
¬
! Since this is a sample problem, we can compare the results of the fit to the "true"¬
! asymptotic formula, where c(1) = 0.57721566..., Euler's constant, and for i > 1,¬
! c(i) = -B(i-1)/(i-1). The B values are Bernoulli numbers, and the first few are:¬
! B(1) = -1/2, B(2) = 1/6, B(4) = -1/30, B(6) = 1/42, ..., with the others being zero:¬
! B(3) = B(5) = B(7) = ... = 0.¬
¬
! The first c's in the list of fitted coefficients give the most agreement with the¬
! theoretical values, and the last ones the least. The linear system is ill-conditioned,¬
! but by using high precision we can get good accuracy for several coefficients.¬
! For example, using 400 digit precision, 60 data points at intervals of 100 (i.e.,¬
! x(i) = 100, 200, 300, ..., 6000), and fitting 60 coefficients, we get at least 50¬
! decimal agreement between the fitted c's and the theoretical ones for c(1), ..., c(29).¬
! c(41) agrees to 16 decimals, and because the number is large this is 31 significant¬
! digit agreement.¬
¬
 integer :: j, k, n, ngap¬
 type (fm) :: h_n, one, det¬
 type (fm), allocatable :: a(:,:), b(:), c(:), x(:), y(:)¬
 type (fm), external :: f¬
¬
! This is not a good way to compute Euler's constant, but with 150 digit precision,¬
! n = 40 data points at intervals of ngap = 10, fitting k = 40 coefficients we get¬
! c(1) = .57721566490153286060651209008240243104215933593992,¬
! correct to 50 places.¬
¬
! Set FM precision.¬
¬
 call fm_set(150)¬
¬
! n is the number of harmonic data points.¬
¬
 n = 40¬
¬
! ngap is the gap between harmonic data points.¬
¬
 ngap = 10¬
¬
! k is the number of coefficients to fit.¬
¬
 k = 40¬

¬
 allocate(a(k, k), b(k), c(k), x(n), y(n), stat=j)¬
 if (j /= 0) then¬
 write (*, "(/' Error in hfit. Unable to allocate arrays with k, n = ', 2i8/)") k, n¬
 stop¬
 endif¬
¬
! Generate the harmonic data points.¬
! Since the coefficient of the first term in the model, ln(x), is assumed¬
! to be 1 and is not being fitted, subtract that from the y data points.¬
¬
 h_n = 0¬
 one = 1¬
 write (*,*) ' '¬
 write (*,*) ' Data points:'¬
 write (*,*) ' '¬
 do j = 1, n*ngap¬
 h_n = h_n + one/j¬
 if (mod(j, ngap) == 0) then¬
 x(j/ngap) = j¬
 y(j/ngap) = h_n - log(x(j/ngap))¬
 write (*, "(a, i4, a, i6, a, a)") ' i = ', j/ngap, ' x = ', j, ' y = ', &¬
 trim(fm_format('f40.35', y(j/ngap)))¬
 endif¬
 enddo¬
¬
! Generate the linear system for the normal equations.¬
¬
 call fm_geneq(f, a, b, k, x, y, n)¬
¬
! Solve the linear system for the normal equations.¬
¬
 call fm_lin_solve(a, c, b, n, det)¬
¬
! Print the solution.¬
! When using f format, FM doesn't like to print 0.00000...0 showing no¬
! significant digits when the actual number is too small for that format.¬
! FM will shift to e format when possible, to avoid showing all zeroes.¬
! In this example, all the even-numbered coefficients are zero in the¬
! asymptotic series for the harmonic numbers, so any non-zero digits¬
! found in the fit are not interesting. Therefore the if statement¬
! below prints exactly zero when c(j) is too small, making the output¬
! look neater.¬
¬
 write (*,*) ' '¬
 write (*,*) ' Fitted coefficients:'¬
 do j = 1, k¬
 if (abs(c(j)) > 1.0d-50) then¬
 write (*, "(a, i3, a, a)") ' j = ', j, ' c(j) = ', trim(fm_format('f60.50', c(j)))¬
 else¬
 write (*, "(a, i3, a, a)") ' j = ', j, ' c(j) = ', trim(fm_format('f60.50', to_fm(0)))¬
 endif¬
 enddo¬
¬
 end program test¬
¬
 function f(j, x) result (return_value)¬
 use fmzm¬

 implicit none¬
¬
! This defines the model function being fitted to the data points.¬
! For the harmonic number case, the model function is:¬
¬
! f(j, x) = 1/x**(j-1)¬
¬
! This will fit the terms c1 + c2/n + c3/n**2 + ... to the harmonic model function¬
! ln(x) + c1 + c2/n + c3/n**2 +¬
¬
 integer :: j¬
 type (fm) :: return_value, x¬
 intent (in) :: j, x¬
¬
 return_value = 1/x**(j-1)¬
¬
 end function f¬

