program test

use fmzm
implicit none

Least squares fit for the coefficients in the asymptotic series for the j-th harmonic number.
$H(j)=1+1 / 2+1 / 3+\ldots+1 / j$ defines the j-th harmonic number.
Find an approximation to $H(j)$ of the form:
$\ln (j)+c(1)+c(2) / j+\ldots+c(k) / j^{* *}(k-1)$

Integrating $1 / x$ from 1 to j gives $\ln (j)$ as a first approximation, and we generate n data points ($x(i), y(i)$) where $x(i)$ is j and $y(i)$ is $H(j)$ for various j values. Then we do a least squares fit of the model function $c(1)+c(2) / j+\ldots+c(k) / j^{* *}(k-1)$ to the data ($x(i), y(i)-\ln (i))$.

Since this is a sample problem, we can compare the results of the fit to the "true" asymptotic formula, where $c(1)=0.57721566 .$. , Euler's constant, and for $i>1$, $c(i)=-B(i-1) /(i-1)$. The B values are Bernoulli numbers, and the first few are: $B(1)=-1 / 2, B(2)=1 / 6, B(4)=-1 / 30, B(6)=1 / 42, \ldots$, with the others being zero: $B(3)=B(5)=B(7)=\ldots=0$.

The first c's in the list of fitted coefficients give the most agreement with the theoretical values, and the last ones the least. The linear system is ill-conditioned, but by using high precision we can get good accuracy for several coefficients.
For example, using 400 digit precision, 60 data points at intervals of 100 (i.e., $x(i)=100,200,300, \ldots, 6000$, and fitting 60 coefficients, we get at least 50 decimal agreement between the fitted c's and the theoretical ones for c(1), ..., c(29). $\mathrm{c}(41)$ agrees to 16 decimals, and because the number is large this is 31 significant digit agreement.

```
integer :: j, k, n, ngap
type (fm) :: h_n, one, det
type (fm), allocatable :: a(:,:), b(:), c(:), x(:), y(:)
type (fm), external :: f
```

This is not a good way to compute Euler's constant, but with 150 digit precision, $\mathrm{n}=40$ data points at intervals of ngap $=10$, fitting $k=40$ coefficients we get $c(1)=.57721566490153286060651209008240243104215933593992$, correct to 50 places.

Set FM precision.
call fm_set(150)
n is the number of harmonic data points.
$n=40$
ngap is the gap between harmonic data points.
ngap $=10$
k is the number of coefficients to fit.
$\mathrm{k}=40$

```
allocate(a(k, k), b(k), c(k), x(n), y(n), stat=j)
if (j /= 0) then
    write (*, "(/' Error in hfit. Unable to allocate arrays with k, n = ', 2i8/)") k, n
    stop
endif
```

Generate the harmonic data points.
Since the coefficient of the first term in the model, $\ln (x)$, is assumed to be 1 and is not being fitted, subtract that from the y data points.

```
h_n = 0
one = 1
write (*,*) ' '
write (*,*) ' Data points:'
write (*,*) ' '
do j = 1, n*ngap
    h_n = h_n + one/j
    if (mod(j, ngap) == 0) then
        x(j/ngap) = j
        y(j/ngap) = h_n - log(x(j/ngap))
        write (*, "(a, i4, a, i6, a, a)") ' i = ', j/ngap, ' x = ', j, ' y = ', &
    trim(fm_format('f40.35', y(j/ngap)))
    endif
```

enddo

Generate the linear system for the normal equations.
call fm_geneq(f, $a, b, k, x, y, n)$

Solve the linear system for the normal equations.
call fm_lin_solve(a, c, b, n, det)

Print the solution.
When using f format, FM doesn't like to print 0.00000...0 showing no significant digits when the actual number is too small for that format.
FM will shift to e format when possible, to avoid showing all zeroes.
In this example, all the even-numbered coefficients are zero in the asymptotic series for the harmonic numbers, so any non-zero digits found in the fit are not interesting. Therefore the if statement below prints exactly zero when $c(j)$ is too small, making the output look neater.
write (*,*) ' '
write (*,*) ' Fitted coefficients:'
do j = 1, k
if $(a b s(c(j))>1.0 d-50)$ then
write (*, "(a, i3, a, a)") ' j = ', j, ' c(j) = ', trim(fm_format('f60.50', c(j)))
else
write (*, "(a, i3, a, a)") ' j = ', j, ' c(j) = ', trim(fm_format('f60.50', to_fm(0)))
endif
enddo
end program test
function $f(j, x)$ result (return_value)
use fmzm
! This defines the model function being fitted to the data points.
! For the harmonic number case, the model function is:
$!\quad f(j, x)=1 / x^{* *}(j-1)$
! This will fit the terms $c 1+c 2 / n+c 3 / n * * 2+\ldots$ to the harmonic model function $!\ln (x)+c 1+c 2 / n+c 3 / n * * 2+\ldots$.
integer : : j
type (fm) : : return_value, x
intent (in) : : j, x
return_value $=1 / x^{* *}(j-1)$
end function f

