program test

use fmzm

implicit none
Least squares fit for the coefficients in the asymptotic series for the j-th harmonic number.
H(3D =1+ 1/2 + 1/3 + ... + 1/j defines the j-th harmonic number.
Find an approximation to H(j) of the form:
In(3) + c(1) + c(2)/F + ... + c()/F**(k-1)
Integrating 1/x from 1 to j gives 1n(j) as a first approximation, and we generate n data
points (x(i), y(i)) where x(i) is j and y(i) is H(j) for various j values. Then we do a

least squares fit of the model function c(l) + c(2)/7 + ... + c(k)/j**(k-1) to the data
x(1), y(i)-1In(i)).

Since this is a sample problem, we can compare the results of the fit to the "true"

asymptotic formula, where c(1l) = 0.57721566..., Euler's constant, and for i > 1,
c(i) = -B(i-1)/(i-1). The B values are Bernoulli numbers, and the first few are:
B(1) = -1/2, B(2) = 1/6, B(4) = -1/30, B(6) = 1/42, ..., with the others being zero:
B(3) =B(B) =B(7) =... =0.

The first c's in the list of fitted coefficients give the most agreement with the
theoretical values, and the last ones the least. The linear system is ill-conditioned,
but by using high precision we can get good accuracy for several coefficients.

For example, using 400 digit precision, 6@ data points at intervals of 100 (i.e.,

x(i) = 100, 200, 300, ..., 6000), and fitting 6@ coefficients, we get at least 50
decimal agreement between the fitted c's and the theoretical ones for c(1), ..., c(29).
c(41) agrees to 16 decimals, and because the number is large this is 31 significant
digit agreement.

integer :: j, k, n, ngap
type (fm) :: h_n, one, det
type (fm), allocatable :: a(:,:), b(:), c(C:), x(:), y(:)
type (fm), external :: f
This is not a good way to compute Euler's constant, but with 150 digit precision,
n = 40 data points at intervals of ngap = 10, fitting k = 40 coefficients we get
c(1) = .57721566490153286060651209008240243104215933593992,
correct to 50 places.
Set FM precision.
call fm_set(150)
n is the number of harmonic data points.
n =40
ngap is the gap between harmonic data points.

ngap = 10

k is the number of coefficients to fit.



allocateCaCk, k), b(k), c(k), x(n), y(n), stat=j)

if (j /= @) then
write (*, "(/' Error in hfit. Unable to allocate arrays with k, n =", 2i8/)") k, n
stop

endif

Generate the harmonic data points.
Since the coefficient of the first term in the model, 1n(x), is assumed
to be 1 and is not being fitted, subtract that from the y data points.

h_n =20
one =1
write (*,*) ' '
write (*,*) ' Data points:'
write (*,*) ' '
do j = 1, n*ngap
h_n = h_n + one/j
if (mod(j, ngap) == 0) then
x(j/ngap) = j
y(3/ngap) = h_n - log(x(j/ngap))
write (*, "(Ca, i4, a, 16, a, a)") "i =", j/ngap, ' x =", 7, y=", &
trim(fm_format('f40.35", y(j/ngap)))
endif
enddo

Generate the linear system for the normal equations.
call fm_geneq(f, a, b, k, x, y, n)

Solve the linear system for the normal equations.
call fm_lin_solve(a, c, b, n, det)

Print the solution.

When using f format, FM doesn't like to print 0.00000...0 showing no
significant digits when the actual number is too small for that format.
FM will shift to e format when possible, to avoid showing all zeroes.
In this example, all the even-numbered coefficients are zero in the
asymptotic series for the harmonic numbers, so any non-zero digits
found in the fit are not interesting. Therefore the if statement
below prints exactly zero when c(j) is too small, making the output
look neater.

write (*,*) ' '
write (*,*) ' Fitted coefficients:'
do j =1, k

if (Cabs(c(j)) > 1.0d-50) then

write (*, "(a, i3, a, @3") ' J =", 3, ' c(3) =", trim(fm_format('f60.50", c(3)))
else
write (*, "Ca, i3, a, a)") " j =", j, ' c(G) =", trim(fm_format('f60.50"', to_fm(®)))
endif
enddo
end program test
function f(j, x) result (return_value)

use fmzm



implicit none

This defines the model function being fitted to the data points.
For the harmonic number case, the model function is:

f(J3, x) = 1/x**(3-1)

This will fit the terms «cl + c2/n + c3/n**2 + ... to the harmonic model function
In(x) + cl + c2/n + c3/n**2 + ...

integer :: j
type (fm) :: return_value, x
intent (in) :: j, X

return_value = 1/x**(j-1)

end function f



