program test
use fmzm
implicit none

If the integrand is highly (or infinitely) oscillatory, standard numerical integration methods often take too long when used directly.

In this program, we indirectly integrate $\sin (1 / x)$ from 0 to 1.

First turn the integral into an infinite series by calling fm_integrate to integrate each separate loop between roots of $\sin (1 / x)$. The function is well-behaved for each call, so fm_integrate can get high precision quickly for each. Next form a sequence of k partial sums for this series. The series converges slowly, with 50 or 100 terms giving only 3 or 4 significant digits of the sum, so we use an extrapolation method to get a more accurate value of the sum of this series from its first k terms. For an alternating series like this, the extrapolation method of Cohen, Villegas, and Zagier often works very well. Repeated Aitken extrapolation could be used instead -- it is a more widely known method.

To compute this integral to 50 significant digits, use 50 for the precision and 70 for the number of roots.

```
type (fm), save :: b, c, d, pi, r1, r2, results(100), s, terms(100), tol
integer :: j, k, kprt, kw, n, nroots
character(80) :: st1
type (fm), external :: f
kprt = 1
kw = 12
open(12, file='0scillateFM.out')
call fm_setvar(' kw = 12 ')
n = 50
call fmset(n)
nroots = 70
```

Integrate between pairs of roots.

```
write (*, "(a)") ' '
write (*, "(a)") ' Integrals between roots:'
write (12, "(a)") ' '
write (12, "(a)") ' Integrals between roots:'
call fm_pi(pi)
tol \(=\) to_fm(10)**(-n)
do \(j=1\), nroots
    kprt = 1
    if ( \(j==1\) ) then
            \(r 1=1 / p i\)
            \(r 2=1\)
    else
            \(r 1=1 /(j * p i)\)
            \(r 2=1 /((j-1) * p i)\)
    endif
    call fm_integrate(f, 1, r1, r2, tol, results(j), kprt, kw)
    if \((\bmod (j, 10)==0)\) write (*, "(a, i4)") ' j = ', j
enddo
```

write (12, "(a)") ' '
write (12, "(a)") ' Partial sums:'
terms(1) = results(1)
do $j=2$, nroots
$\operatorname{terms}(j)=\operatorname{results}(j)+\operatorname{terms}(j-1)$
call fm_form('f56.50', terms(j), st1)
write (12, "(7x, a)") st1
enddo

Use Aitken extrapolation on the sequence of partial sums.
$\mathrm{k}=$ nroots

```
write (12, "(a)") ' '
write (12, "(a)") ' Aitken extrapolation of the partial sums:'
kprt = 0
r1 = abs(terms(k) - terms(k-1))
do j = 3, nroots, 2
    call aitken(k, terms, kprt, kw)
    k = k - 2
    r2 = abs(terms(k) - terms(k-1))
    call fm_form('es12.4', r2, st1)
    write (12, "(i4, a, a)") j/2, ' extrapolations. Estimated error =', trim(st1)
    if (r2 > r1 .or. j >= nroots-1) then
        write (12, "(a)") ' '
        write (12, "(a, i4, a)") ' The last two estimates after ', j/2-1, &
                        ' Aitken extrapolations ='
        write ( *, "(a)") ' '
        write (*, "(a, i4, a)") ' The last two estimates after ', j/2-1, &
                            ' Aitken extrapolations ='
        call fm_form('f56.50', terms(k+1), st1)
        write (12, "(7x, a)") st1
        write ( *, "(7x, a)") st1
        call fm_form('f56.50', terms(k+2), st1)
        write (12, "(7x, a)") st1
        write ( *, "(7x, a)") st1
        exit
    endif
    r1 = r2
enddo
```

Compare Cohen's alternating series extrapolation method.

This method applies to alternating series where the first term is positive and the sequence of partial sums $a(k)$ is totally monotonic. This means that for each fixed k, the sequence of the k-th forward differences of $a(k)$ consists of all positive values or all negative values. Negate the result when the first term is negative.
write (*, "(a)") ' '
write (*, "(a)") " Cohen's alternating series extrapolation method:"
write (*, "(a)") ' '
write (12, "(a)") ' '
write (12, "(a)") " Cohen's alternating series extrapolation method:"
write (12, "(a)") ' '
do $\mathrm{n}=$ nroots-1, nroots
$d=(3+\operatorname{sqrt}(\text { to_fm(8) }))^{* *} n$
$d=(d+1 / d) / 2$
$b=-1$
$c=-d$
$\mathrm{s}=0$
do $k=0, n-1$
$c=b-c$
$s=s+c * a b s(r e s u l t s(k+1))$
$b=(k+n) *(k-n) * b /\left(\left(k+t o _f m\left({ }^{\prime} 0.5^{\prime}\right)\right) *(k+1)\right)$
enddo
$\mathrm{s}=\mathrm{s} / \mathrm{d}$
write (12, "(1x, a, i2, a)") ' $\mathrm{n}=\mathrm{\prime}, \mathrm{n}, \mathrm{'} . \quad$ Extrapolated value ='
if (results (1) < 0) s = -s
call fm_form('f56.50', s, st1)
write (12, "(7x, a)") st1
write (*, "(1x, a, i2, a)") ' $\mathrm{n}=\mathrm{\prime}, \mathrm{n}, \quad$ '. Extrapolated value ='
write (*, "(7x, a)") st1
enddo

For this example problem, there is a closed-form answer in terms of the cosine integral and the sine. Print it as a check.

```
r1 = sin(to_fm(1)) - cos_integral(to_fm(1))
write (12, "(a)") ' '
write (12, "(a)") ' For this example problem, there is a closed-form answer: Sin(1) - Ci(1) ='
call fm_form('f56.50', r1, st1)
write (12, "(7x, a)") st1
write ( *, "(a)") ' '
write (*, "(a)") ' For this example problem, there is a closed-form answer: Sin(1) - Ci(1) ='
write (*, "(7x, a)") st1
write ( *, "(a)") ' '
write (*, "(a)") ' Intermediate results from this calculation are in file Oscillate.out'
write (*, "(a)") ' '
close(12)
stop
end program test
subroutine aitken(k, results, kprt, kw)
use fmzm
implicit none
```

```
Aitken extrapolation.
Extrapolate results(1), ..., results(k). The Aitken values are returned in
results(1), ..., results(k-2)
kprt = 1 means write the new values in results on unit kw
    = 0 means no output is written.
    type (fm) :: results(100)
    integer :: j, k, kprt, kw
    intent (in) :: k, kprt, kw
    intent (inout) :: results
    if (kprt == 1) then
    write (kw, "(a)") ' '
    write (kw, "(a)") ' Aitken extrapolation.'
    endif
```

```
do j = 1, k-2
    if (results(j+2) - 2*results(j+1) + results(j) == 0) then
        results(j) = results(j+2)
    else
        results(j) = results(j+2) - (results(j+2)-results(j+1))**2 / &
                (results(j+2) - 2*results(j+1) + results(j))
    endif
    if (kprt == 1) then
        call fm_print(results(j))
    endif
enddo
end subroutine aitken
function f(x, n) result (return_value)
use fmzm
implicit none
type (fm) :: return_value, x
integer :: n
intent (in) :: x, n
return_value = x
if (n == 1) then
    return_value = sin(1/x)
endif
end function f
```

