
¬
 program test¬
 use fmzm¬
 implicit none¬
¬
! If the integrand is highly (or infinitely) oscillatory, standard numerical integration methods¬
! often take too long when used directly.¬
¬
! In this program, we indirectly integrate sin(1/x) from 0 to 1.¬
¬
! First turn the integral into an infinite series by calling fm_integrate to integrate each¬
! separate loop between roots of sin(1/x). The function is well-behaved for each call, so¬
! fm_integrate can get high precision quickly for each. Next form a sequence of k partial¬
! sums for this series. The series converges slowly, with 50 or 100 terms giving only 3 or 4¬
! significant digits of the sum, so we use an extrapolation method to get a more accurate¬
! value of the sum of this series from its first k terms. For an alternating series like this,¬
! the extrapolation method of Cohen, Villegas, and Zagier often works very well. Repeated Aitken¬
! extrapolation could be used instead -- it is a more widely known method.¬
¬
! To compute this integral to 50 significant digits, use 50 for the precision and 70 for the¬
! number of roots.¬
¬
 type (fm), save :: b, c, d, pi, r1, r2, results(100), s, terms(100), tol¬
 integer :: j, k, kprt, kw, n, nroots¬
 character(80) :: st1¬
 type (fm), external :: f¬
¬
 kprt = 1¬
 kw = 12¬
 open(12, file='OscillateFM.out')¬
 call fm_setvar(' kw = 12 ')¬
¬
 n = 50¬
 call fmset(n)¬
 nroots = 70¬
¬
! Integrate between pairs of roots.¬
¬
 write (*, "(a)") ' '¬
 write (*, "(a)") ' Integrals between roots:'¬
 write (12, "(a)") ' '¬
 write (12, "(a)") ' Integrals between roots:'¬
¬
 call fm_pi(pi)¬
 tol = to_fm(10)**(-n)¬
¬
 do j = 1, nroots¬
 kprt = 1¬
 if (j == 1) then¬
 r1 = 1/pi¬
 r2 = 1¬
 else¬
 r1 = 1/(j*pi)¬
 r2 = 1/((j-1)*pi)¬
 endif¬
 call fm_integrate(f, 1, r1, r2, tol, results(j), kprt, kw)¬
 if (mod(j, 10) == 0) write (*, "(a, i4)") ' j = ', j¬
 enddo¬

¬
! Form the sequence of partial sums.¬
¬
 write (12, "(a)") ' '¬
 write (12, "(a)") ' Partial sums:'¬
 terms(1) = results(1)¬
 do j = 2, nroots¬
 terms(j) = results(j) + terms(j-1)¬
 call fm_form('f56.50', terms(j), st1)¬
 write (12, "(7x, a)") st1¬
 enddo¬
¬
! Use Aitken extrapolation on the sequence of partial sums.¬
¬
 k = nroots¬
¬
 write (12, "(a)") ' '¬
 write (12, "(a)") ' Aitken extrapolation of the partial sums:'¬
 kprt = 0¬
 r1 = abs(terms(k) - terms(k-1))¬
 do j = 3, nroots, 2¬
 call aitken(k, terms, kprt, kw)¬
 k = k - 2¬
 r2 = abs(terms(k) - terms(k-1))¬
 call fm_form('es12.4', r2, st1)¬
 write (12, "(i4, a, a)") j/2, ' extrapolations. Estimated error =', trim(st1)¬
 if (r2 > r1 .or. j >= nroots-1) then¬
 write (12, "(a)") ' '¬
 write (12, "(a, i4, a)") ' The last two estimates after ', j/2-1, &¬
 ' Aitken extrapolations ='¬
 write (*, "(a)") ' '¬
 write (*, "(a, i4, a)") ' The last two estimates after ', j/2-1, &¬
 ' Aitken extrapolations ='¬
 call fm_form('f56.50', terms(k+1), st1)¬
 write (12, "(7x, a)") st1¬
 write (*, "(7x, a)") st1¬
 call fm_form('f56.50', terms(k+2), st1)¬
 write (12, "(7x, a)") st1¬
 write (*, "(7x, a)") st1¬
 exit¬
 endif¬
 r1 = r2¬
 enddo¬
¬
! Compare Cohen's alternating series extrapolation method.¬
¬
! This method applies to alternating series where the first term is positive and the¬
! sequence of partial sums a(k) is totally monotonic. This means that for each fixed k,¬
! the sequence of the k-th forward differences of a(k) consists of all positive values¬
! or all negative values. Negate the result when the first term is negative.¬
¬
 write (*, "(a)") ' '¬
 write (*, "(a)") " Cohen's alternating series extrapolation method:"¬
 write (*, "(a)") ' '¬
 write (12, "(a)") ' '¬
 write (12, "(a)") " Cohen's alternating series extrapolation method:"¬
 write (12, "(a)") ' '¬
 do n = nroots-1, nroots¬

 d = (3 + sqrt(to_fm(8)))**n¬
 d = (d + 1/d)/2¬
 b = -1¬
 c = -d¬
 s = 0¬
 do k = 0, n-1¬
 c = b - c¬
 s = s + c*abs(results(k+1))¬
 b = (k+n)*(k-n)*b / ((k+to_fm('0.5'))*(k+1))¬
 enddo¬
 s = s/d¬
 write (12, "(1x, a, i2, a)") ' n = ', n, '. Extrapolated value ='¬
 if (results(1) < 0) s = -s¬
 call fm_form('f56.50', s, st1)¬
 write (12, "(7x, a)") st1¬
 write (*, "(1x, a, i2, a)") ' n = ', n, '. Extrapolated value ='¬
 write (*, "(7x, a)") st1¬
 enddo¬
¬
! For this example problem, there is a closed-form answer in terms¬
! of the cosine integral and the sine. Print it as a check.¬
¬
 r1 = sin(to_fm(1)) - cos_integral(to_fm(1))¬
 write (12, "(a)") ' '¬
 write (12, "(a)") ' For this example problem, there is a closed-form answer: Sin(1) - Ci(1) ='¬
 call fm_form('f56.50', r1, st1)¬
 write (12, "(7x, a)") st1¬
 write (*, "(a)") ' '¬
 write (*, "(a)") ' For this example problem, there is a closed-form answer: Sin(1) - Ci(1) ='¬
 write (*, "(7x, a)") st1¬
 write (*, "(a)") ' '¬
 write (*, "(a)") ' Intermediate results from this calculation are in file Oscillate.out'¬
 write (*, "(a)") ' '¬
¬
 close(12)¬
 stop¬
¬
 end program test¬
¬
 subroutine aitken(k, results, kprt, kw)¬
 use fmzm¬
 implicit none¬
¬
! Aitken extrapolation.¬
! Extrapolate results(1), ..., results(k). The Aitken values are returned in¬
! results(1), ..., results(k-2)¬
! kprt = 1 means write the new values in results on unit kw¬
! = 0 means no output is written.¬
¬
 type (fm) :: results(100)¬
 integer :: j, k, kprt, kw¬
 intent (in) :: k, kprt, kw¬
 intent (inout) :: results¬
¬
 if (kprt == 1) then¬
 write (kw, "(a)") ' '¬
 write (kw, "(a)") ' Aitken extrapolation.'¬
 endif¬

¬
 do j = 1, k-2¬
 if (results(j+2) - 2*results(j+1) + results(j) == 0) then¬
 results(j) = results(j+2)¬
 else¬
 results(j) = results(j+2) - (results(j+2)-results(j+1))**2 / &¬
 (results(j+2) - 2*results(j+1) + results(j))¬
 endif¬
 if (kprt == 1) then¬
 call fm_print(results(j))¬
 endif¬
 enddo¬
¬
 end subroutine aitken¬
¬
 function f(x, n) result (return_value)¬
 use fmzm¬
 implicit none¬
¬
 type (fm) :: return_value, x¬
 integer :: n¬
 intent (in) :: x, n¬
¬
 return_value = x¬
 if (n == 1) then¬
 return_value = sin(1/x)¬
 endif¬
¬
 end function f¬

