Sample root-finding program.

fm_secant is a multiple precision root-finding routine.

The equation to be solved is $f(x, n f)=0$.
x is the argument to the function.
$n f$ is the function number in case roots to several functions are needed.
character(80) :: st1
type (fm), save :: a1, a2, root
type (fm), external :: f
Set the FM precision to 50 significant digits (plus a few "guard digits").

```
call fm_set(50)
```

Find a root of the first function, $x^{* * 2}-3=0$. a1, a2 are two initial guesses for the root.
$a 1=1$
$a 2=2$

For this call no trace output will be done (kprt $=0$).
$\mathrm{ku}=6$ is used, so any error messages will go to the screen.
write (*,*) ' '
write (*,*) ' '
write (*,*) ' Case 1. Call fm_secant to find a root between 1 and 2' $^{\prime}$
write (*,*) ' for $f(x)=x^{* * 2}$ - 3.'
write (*,*) 'Use kprt $=0$, so no output will be done in the routine, then'
write (*,*) write the results from the main program.'
call fm_secant(a1, a2, f, 1, root, 0, 6)
Write the result, using f35.30 format.
call fm_form('f35.30', root, st1)
write (* , "(/' A root for function 1 is ', a)") trim(st1)

Find a root of the second function, $x * \tan (x)-1=0$. There are infinitely many roots, and from the graph we decide to find the one between 6 and 7 .

This time we ask for 50 digits of the root, and use fm_secant's built-in trace (kprt $=1$) to print the final approximation to the root. The output will appear on more than one line, to allow for the possibility that precision could be hundreds or thousands of digits, so the number might not fit on one line.
write (*,*) ' '
write (*,*) ' '
write (*,*) ' Case 2. Find a root between 6 and 7 for $f(x)=x^{*} \tan (x)$ - 1.'
write (*,*) 'Use kprt $=1$, so fm_secant will print the result.'
call fm_secant(to_fm('6.0d0'), to_fm('7.0d0'), f, 2, root, 1, 6)

Find a root of the third function, $\operatorname{gamma}(x)-10=0$. There is one root larger than 1, and since gamma(5) is 24 this root is less than 5.

Get 50 digits of the root, and use fm_secant's built-in trace to print all iterations (kprt $=2$) as well as the final approximation to the root.

```
write (*,*) ' '
write (*,*) ' '
write (*,*) ' Case 3. Find a root between 1 and 5 for f(x) = gamma(x) - 10.'
write (*,*) ' Use kprt = 2, so fm_secant will print all iterations,'
write (*,*) ' as well as the final result.'
call fm_secant(to_fm(" 1.0 "), to_fm(" 5.0 "), f, 3, root, 2, 6)
```

Find a root of the fourth function, polygamma(0, $x)=0$.
This root is the location of the one positive relative minimum for gamma(x), since the derivative of $\operatorname{gamma}(x)$ is gamma(x)*polygamma(0, $x)$.

Get 50 digits of the root, and use kprt $=1$ to print the root.
write (*,*) ' '
write (*,*) ' '
write (*,*) ' Case 4. Find a root between 1 and 2 for $f(x)=\operatorname{polygamma(0,x).'~}$ write (*,*) 'Use kprt $=1$, so fm_secant will print the result.'
call fm_secant(to_fm(" 1.0 "), to_fm(" 2.0 "), f, 4, root, 1, 6)

Find a root of the fifth function, $\cos (x)+1=0$.
This root has multiplicity 2 at $x=p i$.

Get 50 digits of the root, and use kprt $=2$ to print the iterations.
write (*,*) ' '
write (*,*) ' '
write (*,*) ' Case 5. Find a root near 3.1 for $f(x)=\cos (x)+1$. (Double root)'
write (*,*) 'Use kprt $=2$, so fm_secant will print the iterations.'
call fm_secant(to_fm(" 3.1 "), to_fm(" 3.2 "), f, 5, root, 2, 6)

Find a root of the sixth function, $\cos (x)+1-1.0 d-40=0$.
There are two different roots that agree to about 20 digits, so here the convergence is slower.

Get 50 digits of the root, and use kprt $=1$ to print the root.
write (*,*) ' '
write (*,*) ' '
write (*,*) ' Case 6. Find a root near 3.1 for $f(x)=\cos (x)+1-1.0 \mathrm{e}-40 .{ }^{\prime}$
write $\left({ }^{*}, *\right)$ There are two different roots that agree to about 20 digits,'
write (*,*) ' so here the convergence is slower.'
write (*,*) 'Use kprt $=1$, so fm_secant will print the result.'

```
call fm_secant(to_fm(" 3.1 "), to_fm(" 3.2 "), f, 6, root, 1, 6)
```

Find a root of the seventh function, $\sin (x)+(x-p i)=0$.
This root has multiplicity 3 at $x=p i$.
Get 50 digits of the root, and use kprt $=2$ to print the iterations.

```
write (*,*) ' '
write (*,*) ' '
write (*,*) ' Case 7. Find a root near 3.1 for f(x) = sin(x)**3. (Triple root)'
write (*,*) ' Use kprt = 2, so fm_secant will print the iterations.'
call fm_secant(to_fm(" 3.1 "), to_fm(" 3.2 "), f, 7, root, 2, 6)
write (*,*) ' '
end program test
function f(x,nf) result (return_value)
use fmzm
implicit none
```

x is the argument to the function.
! nf is the function number.
integer :: nf
type (fm) :: return_value, x
intent (in) :: x, nf
if ($n f==1$) then
return_value $=x^{*} x-3$
else if (nf == 2) then
return_value $=x^{*} \tan (x)-1$
else if (nf == 3) then
return_value $=\operatorname{gamma}(x)-10$
else if (nf == 4) then
return_value $=$ polygamma(0, x)
else if (nf == 5) then
return_value $=\cos (x)+1$
else if (nf ==6) then
return_value $=\cos (x)+(1-$ to_fm(' $1.0 d-40$ ' $)$)
else if ($n f==7$) then
return_value $=\sin (x)^{* *} 3$
else
return_value $=3 * x-2$
endif
end function f

