
¬
 program test¬
 use fmzm¬
 implicit none¬
¬
! Sample root-finding program.¬
¬
! fm_secant is a multiple precision root-finding routine.¬
¬
! The equation to be solved is f(x, nf) = 0.¬
! x is the argument to the function.¬
! nf is the function number in case roots to several functions are needed.¬
¬
 character(80) :: st1¬
 type (fm), save :: a1, a2, root¬
 type (fm), external :: f¬
¬
! Set the FM precision to 50 significant digits (plus a few "guard digits").¬
¬
 call fm_set(50)¬
¬
! Find a root of the first function, x**2 - 3 = 0.¬
! a1, a2 are two initial guesses for the root.¬
¬
 a1 = 1¬
 a2 = 2¬
¬
! For this call no trace output will be done (kprt = 0).¬
! ku = 6 is used, so any error messages will go to the screen.¬
¬
 write (*,*) ' '¬
 write (*,*) ' '¬
 write (*,*) ' Case 1. Call fm_secant to find a root between 1 and 2'¬
 write (*,*) ' for f(x) = x**2 - 3.'¬
 write (*,*) ' Use kprt = 0, so no output will be done in the routine, then'¬
 write (*,*) ' write the results from the main program.'¬
¬
 call fm_secant(a1, a2, f, 1, root, 0, 6)¬
¬
! Write the result, using f35.30 format.¬
¬
 call fm_form('f35.30', root, st1)¬
 write (* , "(/' A root for function 1 is ', a)") trim(st1)¬
¬
¬
! Find a root of the second function, x*tan(x) - 1 = 0. There are infinitely many¬
! roots, and from the graph we decide to find the one between 6 and 7.¬
¬
! This time we ask for 50 digits of the root, and use fm_secant's built-in trace¬
! (kprt = 1) to print the final approximation to the root. The output will appear on¬
! more than one line, to allow for the possibility that precision could be hundreds or¬
! thousands of digits, so the number might not fit on one line.¬
¬
 write (*,*) ' '¬
 write (*,*) ' '¬
 write (*,*) ' Case 2. Find a root between 6 and 7 for f(x) = x*tan(x) - 1.'¬
 write (*,*) ' Use kprt = 1, so fm_secant will print the result.'¬
¬

 call fm_secant(to_fm('6.0d0'), to_fm('7.0d0'), f, 2, root, 1, 6)¬
¬
¬
! Find a root of the third function, gamma(x) - 10 = 0. There is one root larger¬
! than 1, and since gamma(5) is 24 this root is less than 5.¬
¬
! Get 50 digits of the root, and use fm_secant's built-in trace to print all¬
! iterations (kprt = 2) as well as the final approximation to the root.¬
¬
 write (*,*) ' '¬
 write (*,*) ' '¬
 write (*,*) ' Case 3. Find a root between 1 and 5 for f(x) = gamma(x) - 10.'¬
 write (*,*) ' Use kprt = 2, so fm_secant will print all iterations,'¬
 write (*,*) ' as well as the final result.'¬
¬
 call fm_secant(to_fm(" 1.0 "), to_fm(" 5.0 "), f, 3, root, 2, 6)¬
¬
¬
! Find a root of the fourth function, polygamma(0, x) = 0.¬
! This root is the location of the one positive relative minimum for gamma(x),¬
! since the derivative of gamma(x) is gamma(x)*polygamma(0, x).¬
¬
! Get 50 digits of the root, and use kprt = 1 to print the root.¬
¬
 write (*,*) ' '¬
 write (*,*) ' '¬
 write (*,*) ' Case 4. Find a root between 1 and 2 for f(x) = polygamma(0, x).'¬
 write (*,*) ' Use kprt = 1, so fm_secant will print the result.'¬
¬
 call fm_secant(to_fm(" 1.0 "), to_fm(" 2.0 "), f, 4, root, 1, 6)¬
¬
¬
! Find a root of the fifth function, cos(x) + 1 = 0.¬
! This root has multiplicity 2 at x = pi.¬
¬
! Get 50 digits of the root, and use kprt = 2 to print the iterations.¬
¬
 write (*,*) ' '¬
 write (*,*) ' '¬
 write (*,*) ' Case 5. Find a root near 3.1 for f(x) = cos(x) + 1. (Double root)'¬
 write (*,*) ' Use kprt = 2, so fm_secant will print the iterations.'¬
¬
 call fm_secant(to_fm(" 3.1 "), to_fm(" 3.2 "), f, 5, root, 2, 6)¬
¬
¬
! Find a root of the sixth function, cos(x) + 1 - 1.0d-40 = 0.¬
! There are two different roots that agree to about 20 digits, so here¬
! the convergence is slower.¬
¬
! Get 50 digits of the root, and use kprt = 1 to print the root.¬
¬
 write (*,*) ' '¬
 write (*,*) ' '¬
 write (*,*) ' Case 6. Find a root near 3.1 for f(x) = cos(x) + 1 - 1.0e-40.'¬
 write (*,*) ' There are two different roots that agree to about 20 digits,'¬
 write (*,*) ' so here the convergence is slower.'¬
 write (*,*) ' Use kprt = 1, so fm_secant will print the result.'¬
¬

 call fm_secant(to_fm(" 3.1 "), to_fm(" 3.2 "), f, 6, root, 1, 6)¬
¬
¬
! Find a root of the seventh function, sin(x) + (x - pi) = 0.¬
! This root has multiplicity 3 at x = pi.¬
¬
! Get 50 digits of the root, and use kprt = 2 to print the iterations.¬
¬
 write (*,*) ' '¬
 write (*,*) ' '¬
 write (*,*) ' Case 7. Find a root near 3.1 for f(x) = sin(x)**3. (Triple root)'¬
 write (*,*) ' Use kprt = 2, so fm_secant will print the iterations.'¬
¬
 call fm_secant(to_fm(" 3.1 "), to_fm(" 3.2 "), f, 7, root, 2, 6)¬
¬
 write (*,*) ' '¬
¬
 end program test¬
¬
 function f(x, nf) result (return_value)¬
 use fmzm¬
 implicit none¬
¬
! x is the argument to the function.¬
! nf is the function number.¬
¬
 integer :: nf¬
 type (fm) :: return_value, x¬
 intent (in) :: x, nf¬
¬
 if (nf == 1) then¬
 return_value = x*x - 3¬
 else if (nf == 2) then¬
 return_value = x*tan(x) - 1¬
 else if (nf == 3) then¬
 return_value = gamma(x) - 10¬
 else if (nf == 4) then¬
 return_value = polygamma(0, x)¬
 else if (nf == 5) then¬
 return_value = cos(x) + 1¬
 else if (nf == 6) then¬
 return_value = cos(x) + (1 - to_fm(' 1.0d-40 '))¬
 else if (nf == 7) then¬
 return_value = sin(x)**3¬
 else¬
 return_value = 3*x - 2¬
 endif¬
¬
 end function f¬

