
¬
 program test¬
 use fmzm¬
 implicit none¬
¬
! Examples and advice for using fm_integrate.¬
¬
 type (fm), save :: a, b, check, err, pi, r1, r2, result, seven, tol¬
 type (fm), external :: f¬
 integer :: k, kprt, n, n_errors, nw¬
 character(80) :: st1¬
¬
 n_errors = 0¬
¬
¬
¬
! 1. Start with an integral without singularities on the interval of integration.¬
¬
! integrate log(t) * cos(t) from pi/4 to pi/2.¬
¬
! Set the tolerance to get at least 40 significant digits.¬
! fm_integrate does a sequence of iterations using the tanh-sinh quadrature formula.¬
! Each iteration uses more points until the last two iterates agree within the¬
! specified tolerance. Since the next-to-last iterate satisfies the tolerance¬
! and the last iterate (returned as result) is even more accurate, the value¬
! returned from fm_integrate is usually slightly more accurate than requested.¬
! In this case, the error check below shows that result is actually correct¬
! to about 60 digits.¬
¬
! It is usually best to set FM's precision level to be slightly higher than the¬
! number of digits requested with the tolerance. Here we set precision to 20¬
! more digits.¬
¬
 n = 1¬
¬
! Call fm_set to define FM's precision level before any multiple precision variables¬
! are defined. This sets 60-digit precision and tol is 1.0e-40.¬
¬
 k = 40¬
 call fm_set(k+20)¬
 tol = to_fm(10) ** (-k)¬
¬
 write (*, "(//)")¬
 call fm_pi(pi)¬
¬
! a and b are the limits for the integral.¬
¬
 a = pi / 4¬
 b = pi / 2¬
¬
! kprt controls trace printing in fm_integrate. Setting it to 1 will print a summary¬
! of the call, giving the result, number of function evaluations, and time.¬
! nw is the unit number for this trace output.¬
¬
 kprt = 1¬
 nw = 6¬
¬
 call fm_integrate(f, n, a, b, tol, result, kprt, nw)¬

¬
! For these sample problems the integrals have known closed-form results, so¬
! we can check the accuracy of fm_integrate.¬
¬
 check = log(pi/2) - log(pi/4)/sqrt(to_fm(2)) + sin_integral(pi/4) - sin_integral(pi/2)¬
¬
 err = abs(result - check)¬
 call fm_form('es12.4', err, st1)¬
 write (*, "(/10x, a, i2, a, a)") ' Error for case ', n, ' = ', trim(st1)¬
 if (err > tol) n_errors = n_errors + 1¬
¬
¬
¬
! 2. Next do an integral with a singularity at zero¬
! (from "Integrals of Powers of LogGamma" by T. Amdeberhan, M. Coffey, O. Espinosa,¬
! C. Koutschan, D. Manna, and V. Moll, in Proc. Amer. Math. Soc., #139, 2011)¬
¬
! integrate log(gamma(t)) from 0 to 1.¬
¬
! Leave precision and tolerance the same as above.¬
¬
! The tanh-sinh algorithm is good at handling singularities at the endpoints,¬
! so this case takes about the same number of function evaluations as case 1.¬
¬
 n = 2¬
 write (*, "(//)")¬
 a = 0¬
 b = 1¬
 tol = to_fm(10) ** (-k)¬
 kprt = 1¬
 nw = 6¬
¬
 call fm_integrate(f, n, a, b, tol, result, kprt, nw)¬
¬
 check = log(sqrt(2*pi))¬
 err = abs(result - check)¬
 call fm_form('es12.4', err, st1)¬
 write (*, "(/10x, a, i2, a, a)") ' Error for case ', n, ' = ', trim(st1)¬
 if (err > tol) n_errors = n_errors + 1¬
¬
¬
¬
! 3. This integral has a pole at pi/2 and a sqrt singularity at zero.¬
! (from "a Comparison of Three High-Precision Quadrature Schemes" by D. H. Bailey,¬
! K. Jeyabalan, and X. S. Li, in Experimental Mathematics, Vol 14 (2005), No. 3)¬
¬
! integrate sqrt(tan(t)) from 0 to pi/2.¬
¬
! Set tolerance to give 100 digits.¬
¬
! Here the fact that the pi/2 endpoint is not exactly representable in floating¬
! point form causes a problem. fm_integrate will increase precision above the¬
! user's level while computing the integral. But the endpoints a and b are input¬
! values that were defined at the user's precision, and their extra digits will be¬
! zeros when precision is raised in fm_integrate.¬
¬
! That is fine for a = 0, but b = pi/2 will still be accurate only to the user's¬
! precision, not to the higher intermediate precision. The fact that b is a¬

! singularity for the function means that fm_integrate will need to know the¬
! position of b to higher precision to evaluate the integral accurately.¬
¬
! The fix is to make a change of variables to get an equivalent integral where¬
! both endpoints are exact in floating point. Leaving a singular endpoint inexact¬
! will usually cause fm_integrate to run much slower, and sometimes fail.¬
¬
! Let u = t * 2 / pi. Then t = u * pi / 2 and dt = pi/2 du.¬
! The new form of this integral becomes:¬
¬
! integrate sqrt(abs(tan(u * pi / 2))) * pi / 2 from 0 to 1.¬
¬
! Now pi will be computed inside function f, so it will be done at whatever higher¬
! precision fm_integrate uses.¬
¬
! When changing variables in this case, we also need to defend against rounding¬
! errors when computing u * pi / 2. When u is very close to 1, rounding could¬
! cause u * pi / 2 to round up, giving a value slightly greater than pi/2.¬
! Then tan would return a negative value and then sqrt would return unknown,¬
! causing the integration to fail. The fix is to take the absolute value before¬
! doing the square root.¬
¬
 n = 3¬
 k = 100¬
 call fm_set(k+20)¬
¬
! Precision has increased, so we must get pi at the new precision.¬
¬
 call fm_pi(pi)¬
 write (*, "(//)")¬
 a = 0¬
 b = 1¬
 tol = to_fm(10) ** (-k)¬
 kprt = 1¬
 nw = 6¬
¬
 call fm_integrate(f, n, a, b, tol, result, kprt, nw)¬
¬
 check = pi * sqrt(to_fm(2)) / 2¬
 err = abs(result - check)¬
 call fm_form('es12.4', err, st1)¬
 write (*, "(/10x, a, i2, a, a)") ' Error for case ', n, ' = ', trim(st1)¬
 if (err > tol) n_errors = n_errors + 1¬
¬
¬
¬
! 4. integrate exp(-t**2 / 2) from 0 to infinity.¬
! (from "a Comparison of Three High-Precision Quadrature Schemes" by D. H. Bailey,¬
! K. Jeyabalan, and X. S. Li, in Experimental Mathematics, Vol 14 (2005), No. 3)¬
¬
! Set tolerance to give 100 digits.¬
¬
! Infinite regions must be converted to finite ones. Let u = 1/(t+1) to get:¬
¬
! integrate exp(-(1/u - 1)**2 / 2) / u**2 from 0 to 1.¬
¬
! Exponential functions pose another problem for fm_integrate.¬
! When u is very close to zero the exponential can underflow. FM does not flush¬

! underflows to zero like most floating point systems, so when that value is¬
! then divided by the small u**2 FM detects the possibility that this result¬
! could be above the underflow threshold. Since FM can't be sure whether the¬
! true function value is below the underflow threshold, unknown is returned.¬
¬
! The fix in this case is to see that whenever underflow occurs in this integration¬
! the final function value is too small to change the integral. That is the usual¬
! situation whenever f underflows and the final value of the integral is greater¬
! than 10**(-10**6) in magnitude, because FM's underflow is less than 10**(-10**8).¬
! So we check for underflow after doing the exponential in function f and replace¬
! underflowed function values by zero.¬
¬
! Starting with the 2022 version of FM this check for intermediate underflow can¬
! usually be skipped. Some extra information is now included in underflowed or¬
! overflowed results, so that usually the program can tell in cases like this¬
! that when the exp function underflows, after dividing by u**2 for a small u the¬
! function value is still in the underflow region. Then FM can return underflow¬
! for the function value instead of the unknown result in previous versions.¬
¬
! The old check for underflow has been left in the f(x) routine in this program,¬
! since there are still some rare cases where it might be needed.¬
¬
 n = 4¬
 k = 100¬
 call fm_set(k+20)¬
 call fm_pi(pi)¬
 write (*, "(//)")¬
 a = 0¬
 b = 1¬
 tol = to_fm(10) ** (-k)¬
 kprt = 1¬
 nw = 6¬
¬
 call fm_integrate(f, n, a, b, tol, result, kprt, nw)¬
¬
 check = sqrt(pi / 2)¬
 err = abs(result - check)¬
 call fm_form('es12.4', err, st1)¬
 write (*, "(/10x, a, i2, a, a)") ' Error for case ', n, ' = ', trim(st1)¬
 if (err > tol) n_errors = n_errors + 1¬
¬
¬
¬
! 5. integrate log(abs((tan(t) + sqrt(7)) / (tan(t) - sqrt(7))))¬
! from pi/3 to pi/2.¬
! (from "High-Precision Numerical Integration: Progress and Challenges"¬
! by D. H. Bailey and J. M. Borwein (2009))¬
¬
! Set tolerance to give 150 digits.¬
¬
! There is only one singularity, but it is atan(sqrt(7)), which is not an endpoint.¬
! fm_integrate will initially have very slow convergence and then will try to¬
! isolate the singularity and split into two integrals with the singularity at¬
! endpoints.¬
¬
! This strategy works here, but it is slower and doesn't always succeed.¬
! Case 6 shows a better way to handle interior singularities.¬
¬

 n = 5¬
 k = 150¬
 call fm_set(k+20)¬
 call fm_pi(pi)¬
 write (*, "(//)")¬
 a = pi/3¬
 b = pi/2¬
 tol = to_fm(10) ** (-k)¬
 kprt = 1¬
 nw = 6¬
¬
 call fm_integrate(f, n, a, b, tol, result, kprt, nw)¬
¬
 seven = 7¬
 check = (sqrt(seven) / 168) * (polygamma(1, 1/seven) + polygamma(1, 2/seven) - &¬
 polygamma(1, 3/seven) + polygamma(1, 4/seven) - &¬
 polygamma(1, 5/seven) - polygamma(1, 6/seven))¬
 err = abs(result - check)¬
 call fm_form('es12.4', err, st1)¬
 write (*, "(/10x, a, i2, a, a)") ' Error for case ', n, ' = ', trim(st1)¬
 if (err > tol) n_errors = n_errors + 1¬
¬
¬
¬
! 6. Same integral as case 5.¬
¬
! integrate log(abs((tan(t) + sqrt(7)) / (tan(t) - sqrt(7))))¬
! from pi/3 to pi/2.¬
¬
! Set tolerance to give 150 digits.¬
¬
! Split into two integrals and change variables to make the endpoints exact.¬
! This will be faster than making fm_integrate search for the interior singularity¬
! as in case 5.¬
! Call the two function numbers 61 and 62.¬
¬
! 1. from pi/3 to atan(sqrt(7)).¬
! Let u = (t - pi/3) / (atan(sqrt(7)) - pi/3)¬
¬
! 2. from atan(sqrt(7)) to pi/2.¬
! Let v = (t - atan(sqrt(7))) / (pi/2 - atan(sqrt(7)))¬
¬
! This gives two integrals from 0 to 1, then we add the two results.¬
¬
 n = 6¬
 k = 150¬
 call fm_set(k+20)¬
 call fm_pi(pi)¬
 write (*, "(//)")¬
 a = 0¬
 b = 1¬
 tol = to_fm(10) ** (-k)¬
 kprt = 1¬
 nw = 6¬
¬
 call fm_integrate(f, 61, a, b, tol, r1, kprt, nw)¬
 call fm_integrate(f, 62, a, b, tol, r2, kprt, nw)¬
 result = r1 + r2¬

¬
 write (*,*) ' '¬
 write (*,*) ' Adding these last two integrals gives the case 6 result:'¬
 write (*,*) ' '¬
 call fm_print(result)¬
¬
 seven = 7¬
 check = (sqrt(seven) / 168) * (polygamma(1, 1/seven) + polygamma(1, 2/seven) - &¬
 polygamma(1, 3/seven) + polygamma(1, 4/seven) - &¬
 polygamma(1, 5/seven) - polygamma(1, 6/seven))¬
 err = abs(result - check)¬
 call fm_form('es12.4', err, st1)¬
 write (*, "(/10x, a, i2, a, a)") ' Error for case ', n, ' = ', trim(st1)¬
 if (err > tol) n_errors = n_errors + 1¬
¬
¬
¬
! 7. Same integral as cases 5 and 6.¬
! Combine these two integrals into one, so only one call to fm_integrate is needed.¬
! This will be faster than doing two calls as in case 6.¬
¬
! integrate log(abs((tan(t) + sqrt(7)) / (tan(t) - sqrt(7))))¬
! from pi/3 to pi/2.¬
¬
! Set tolerance to give 150 digits.¬
¬
! Split into two integrals and change variables to make the endpoints exact.¬
! Both new integrals are from 0 to 1.¬
¬
! 1. from pi/3 to atan(sqrt(7)).¬
! Let u = (t - pi/3) / (atan(sqrt(7)) - pi/3)¬
¬
! 2. from atan(sqrt(7)) to pi/2.¬
! Let v = (t - atan(sqrt(7))) / (pi/2 - atan(sqrt(7)))¬
¬
 n = 7¬
 k = 150¬
 call fm_set(k+20)¬
 call fm_pi(pi)¬
 write (*, "(//)")¬
 a = 0¬
 b = 1¬
 tol = to_fm(10) ** (-k)¬
 kprt = 1¬
 nw = 6¬
¬
 call fm_integrate(f, 7, a, b, tol, result, kprt, nw)¬
¬
 seven = 7¬
 check = (sqrt(seven) / 168) * (polygamma(1, 1/seven) + polygamma(1, 2/seven) - &¬
 polygamma(1, 3/seven) + polygamma(1, 4/seven) - &¬
 polygamma(1, 5/seven) - polygamma(1, 6/seven))¬
 err = abs(result - check)¬
 call fm_form('es12.4', err, st1)¬
 write (*, "(/10x, a, i2, a, a)") ' Error for case ', n, ' = ', trim(st1)¬
 if (err > tol) n_errors = n_errors + 1¬
¬
¬

¬
 write (*,*) ' '¬
 write (*,*) ' '¬
 if (n_errors == 0) then¬
 write (*,*) ' All results were ok -- no errors were found.'¬
 else¬
 write (*,*) n_errors, ' error(s) were found.'¬
 endif¬
 write (*,*) ' '¬
¬
 stop¬
 end program test¬
¬
 function f(x, n) result (return_value)¬
 use fmzm¬
 implicit none¬
¬
 type (fm) :: return_value, x¬
 integer :: n¬
 intent (in) :: x, n¬
 type (fm), save :: c1, c2, pi, sqrt7, tanx¬
¬
 if (n == 1) then¬
 return_value = log(x) * cos(x)¬
 else if (n == 2) then¬
 return_value = log(gamma(x))¬
 else if (n == 3) then¬
¬
! The original limits from 0 to pi/2 have been changed to 0 to 1.¬
¬
 call fm_pi(pi)¬
 return_value = pi * sqrt(abs(tan(pi * x / 2))) / 2¬
 else if (n == 4) then¬
¬
! Before the 2023 version of FM, exp could underflow and then make f unknown.¬
! The previous code here checked for underflow and set f = 0 in that case.¬
¬
! return_value = exp(-(1 - 1/x)**2 / 2)¬
! if (is_underflow(return_value)) then¬
! return_value = 0¬
! else¬
! return_value = return_value / x**2¬
! endif¬
¬
! Starting with the 2023 version, FM's exception handling is stronger, so¬
! now these undeflows in exp don't need to be trapped and the integration¬
! works as intented.¬
¬
 return_value = exp(-(1 - 1/x)**2 / 2) / x**2¬
 else if (n == 5) then¬
 sqrt7 = sqrt(to_fm(7))¬
 tanx = tan(x)¬
 return_value = log(abs((tanx + sqrt7) / (tanx - sqrt7)))¬
 else if (n == 61) then¬
 call fm_pi(pi)¬
¬
! It is tempting to compute constants like c1, c2, sqrt7 once and then save them for¬
! use in subsequent calls to f. That can be done, but it is trickier than it seems,¬

! since fm_integrate may call f with different precision levels during one integration,¬
! so it is easy to not have the right precision in a saved variable.¬
! Here we just compute them each time, making the logic straightforward while the¬
! function evaluations are somewhat slower.¬
¬
 sqrt7 = sqrt(to_fm(7))¬
 c1 = atan(sqrt7) - pi/3¬
 tanx = tan(c1*x + pi/3)¬
 return_value = c1 * log(abs((tanx + sqrt7) / (tanx - sqrt7)))¬
 else if (n == 62) then¬
 call fm_pi(pi)¬
 sqrt7 = sqrt(to_fm(7))¬
 c2 = atan(sqrt7)¬
 c1 = pi/2 - c2¬
 tanx = tan(c1*x + c2)¬
 return_value = c1 * log(abs((tanx + sqrt7) / (tanx - sqrt7)))¬
 else if (n == 7) then¬
¬
! Combine the two integrals into one.¬
¬
 call fm_pi(pi)¬
 sqrt7 = sqrt(to_fm(7))¬
 c2 = atan(sqrt7)¬
 c1 = c2 - pi/3¬
 tanx = tan(c1*x + pi/3)¬
 return_value = c1 * log(abs((tanx + sqrt7) / (tanx - sqrt7)))¬
¬
 c1 = pi/2 - c2¬
 tanx = tan(c1*x + c2)¬
 return_value = return_value + c1 * log(abs((tanx + sqrt7) / (tanx - sqrt7)))¬
 endif¬
¬
 end function f¬

