
¬
      program test¬
      use fmzm¬
      implicit none¬
¬
!  Examples and advice for using fm_integrate.¬
¬
      type (fm), save :: a, b, check, err, pi, r1, r2, result, seven, tol¬
      type (fm), external :: f¬
      integer :: k, kprt, n, n_errors, nw¬
      character(80) :: st1¬
¬
      n_errors = 0¬
¬
¬
¬
!             1.  Start with an integral without singularities on the interval of integration.¬
¬
!                 integrate  log(t) * cos(t)  from  pi/4 to pi/2.¬
¬
!                 Set the tolerance to get at least 40 significant digits.¬
!                 fm_integrate does a sequence of iterations using the tanh-sinh quadrature formula.¬
!                 Each iteration uses more points until the last two iterates agree within the¬
!                 specified tolerance.  Since the next-to-last iterate satisfies the tolerance¬
!                 and the last iterate (returned as result) is even more accurate, the value¬
!                 returned from fm_integrate is usually slightly more accurate than requested.¬
!                 In this case, the error check below shows that result is actually correct¬
!                 to about 60 digits.¬
¬
!                 It is usually best to set FM's precision level to be slightly higher than the¬
!                 number of digits requested with the tolerance.  Here we set precision to 20¬
!                 more digits.¬
¬
      n = 1¬
¬
!             Call fm_set to define FM's precision level before any multiple precision variables¬
!             are defined.  This sets 60-digit precision and tol is 1.0e-40.¬
¬
      k = 40¬
      call fm_set(k+20)¬
      tol = to_fm(10) ** (-k)¬
¬
      write (*, "(//)")¬
      call fm_pi(pi)¬
¬
!             a and b are the limits for the integral.¬
¬
      a = pi / 4¬
      b = pi / 2¬
¬
!             kprt controls trace printing in fm_integrate.  Setting it to 1 will print a summary¬
!                  of the call, giving the result, number of function evaluations, and time.¬
!             nw   is the unit number for this trace output.¬
¬
      kprt = 1¬
      nw = 6¬
¬
      call fm_integrate(f, n, a, b, tol, result, kprt, nw)¬



¬
!             For these sample problems the integrals have known closed-form results, so¬
!             we can check the accuracy of fm_integrate.¬
¬
      check = log(pi/2) - log(pi/4)/sqrt(to_fm(2)) + sin_integral(pi/4) - sin_integral(pi/2)¬
¬
      err = abs( result - check )¬
      call fm_form('es12.4', err, st1)¬
      write (*, "(/10x, a, i2, a, a)") ' Error for case ', n, ' = ', trim(st1)¬
      if (err > tol) n_errors = n_errors + 1¬
¬
¬
¬
!             2.  Next do an integral with a singularity at zero¬
!                 (from "Integrals of Powers of LogGamma" by T. Amdeberhan, M. Coffey, O. Espinosa,¬
!                 C. Koutschan, D. Manna, and V. Moll, in Proc. Amer. Math. Soc., #139, 2011)¬
¬
!                 integrate  log( gamma(t) )  from  0 to 1.¬
¬
!                 Leave precision and tolerance the same as above.¬
¬
!                 The tanh-sinh algorithm is good at handling singularities at the endpoints,¬
!                 so this case takes about the same number of function evaluations as case 1.¬
¬
      n = 2¬
      write (*, "(//)")¬
      a = 0¬
      b = 1¬
      tol = to_fm(10) ** (-k)¬
      kprt = 1¬
      nw = 6¬
¬
      call fm_integrate(f, n, a, b, tol, result, kprt, nw)¬
¬
      check = log( sqrt( 2*pi ) )¬
      err = abs( result - check )¬
      call fm_form('es12.4', err, st1)¬
      write (*, "(/10x, a, i2, a, a)") ' Error for case ', n, ' = ', trim(st1)¬
      if (err > tol) n_errors = n_errors + 1¬
¬
¬
¬
!             3.  This integral has a pole at pi/2 and a sqrt singularity at zero.¬
!                 (from "a Comparison of Three High-Precision Quadrature Schemes" by D. H. Bailey,¬
!                 K. Jeyabalan, and X. S. Li, in Experimental Mathematics, Vol 14 (2005), No. 3)¬
¬
!                 integrate  sqrt( tan(t) )  from  0 to pi/2.¬
¬
!                 Set tolerance to give 100 digits.¬
¬
!                 Here the fact that the pi/2 endpoint is not exactly representable in floating¬
!                 point form causes a problem.  fm_integrate will increase precision above the¬
!                 user's level while computing the integral.  But the endpoints a and b are input¬
!                 values that were defined at the user's precision, and their extra digits will be¬
!                 zeros when precision is raised in fm_integrate.¬
¬
!                 That is fine for a = 0, but b = pi/2 will still be accurate only to the user's¬
!                 precision, not to the higher intermediate precision.  The fact that b is a¬



!                 singularity for the function means that fm_integrate will need to know the¬
!                 position of b to higher precision to evaluate the integral accurately.¬
¬
!                 The fix is to make a change of variables to get an equivalent integral where¬
!                 both endpoints are exact in floating point.  Leaving a singular endpoint inexact¬
!                 will usually cause fm_integrate to run much slower, and sometimes fail.¬
¬
!                 Let  u = t * 2 / pi.  Then  t = u * pi / 2  and  dt = pi/2 du.¬
!                 The new form of this integral becomes:¬
¬
!                 integrate  sqrt( abs( tan( u * pi / 2 ) ) ) * pi / 2  from  0 to 1.¬
¬
!                 Now pi will be computed inside function f, so it will be done at whatever higher¬
!                 precision fm_integrate uses.¬
¬
!                 When changing variables in this case, we also need to defend against rounding¬
!                 errors when computing  u * pi / 2.  When u is very close to 1, rounding could¬
!                 cause u * pi / 2 to round up, giving a value slightly greater than pi/2.¬
!                 Then tan would return a negative value and then sqrt would return unknown,¬
!                 causing the integration to fail.  The fix is to take the absolute value before¬
!                 doing the square root.¬
¬
      n = 3¬
      k = 100¬
      call fm_set(k+20)¬
¬
!             Precision has increased, so we must get pi at the new precision.¬
¬
      call fm_pi(pi)¬
      write (*, "(//)")¬
      a = 0¬
      b = 1¬
      tol = to_fm(10) ** (-k)¬
      kprt = 1¬
      nw = 6¬
¬
      call fm_integrate(f, n, a, b, tol, result, kprt, nw)¬
¬
      check = pi * sqrt( to_fm(2) ) / 2¬
      err = abs( result - check )¬
      call fm_form('es12.4', err, st1)¬
      write (*, "(/10x, a, i2, a, a)") ' Error for case ', n, ' = ', trim(st1)¬
      if (err > tol) n_errors = n_errors + 1¬
¬
¬
¬
!             4.  integrate  exp( -t**2 / 2 )  from  0 to infinity.¬
!                 (from "a Comparison of Three High-Precision Quadrature Schemes" by D. H. Bailey,¬
!                 K. Jeyabalan, and X. S. Li, in Experimental Mathematics, Vol 14 (2005), No. 3)¬
¬
!                 Set tolerance to give 100 digits.¬
¬
!                 Infinite regions must be converted to finite ones.  Let u = 1/(t+1) to get:¬
¬
!                 integrate  exp( -(1/u - 1)**2 / 2 ) / u**2  from  0 to 1.¬
¬
!                 Exponential functions pose another problem for fm_integrate.¬
!                 When u is very close to zero the exponential can underflow.  FM does not flush¬



!                 underflows to zero like most floating point systems, so when that value is¬
!                 then divided by the small u**2 FM detects the possibility that this result¬
!                 could be above the underflow threshold.  Since FM can't be sure whether the¬
!                 true function value is below the underflow threshold, unknown is returned.¬
¬
!                 The fix in this case is to see that whenever underflow occurs in this integration¬
!                 the final function value is too small to change the integral.  That is the usual¬
!                 situation whenever f underflows and the final value of the integral is greater¬
!                 than 10**(-10**6) in magnitude, because FM's underflow is less than 10**(-10**8).¬
!                 So we check for underflow after doing the exponential in function f and replace¬
!                 underflowed function values by zero.¬
¬
!                 Starting with the 2022 version of FM this check for intermediate underflow can¬
!                 usually be skipped.  Some extra information is now included in underflowed or¬
!                 overflowed results, so that usually the program can tell in cases like this¬
!                 that when the exp function underflows, after dividing by u**2 for a small u the¬
!                 function value is still in the underflow region.  Then FM can return underflow¬
!                 for the function value instead of the unknown result in previous versions.¬
¬
!                 The old check for underflow has been left in the f(x) routine in this program,¬
!                 since there are still some rare cases where it might be needed.¬
¬
      n = 4¬
      k = 100¬
      call fm_set(k+20)¬
      call fm_pi(pi)¬
      write (*, "(//)")¬
      a = 0¬
      b = 1¬
      tol = to_fm(10) ** (-k)¬
      kprt = 1¬
      nw = 6¬
¬
      call fm_integrate(f, n, a, b, tol, result, kprt, nw)¬
¬
      check = sqrt( pi / 2 )¬
      err = abs( result - check )¬
      call fm_form('es12.4', err, st1)¬
      write (*, "(/10x, a, i2, a, a)") ' Error for case ', n, ' = ', trim(st1)¬
      if (err > tol) n_errors = n_errors + 1¬
¬
¬
¬
!             5.  integrate  log( abs( ( tan(t) + sqrt(7) ) / ( tan(t) - sqrt(7) ) ) )¬
!                            from  pi/3 to pi/2.¬
!                 (from "High-Precision Numerical Integration: Progress and Challenges"¬
!                 by D. H. Bailey and J. M. Borwein (2009))¬
¬
!                 Set tolerance to give 150 digits.¬
¬
!                 There is only one singularity, but it is atan(sqrt(7)), which is not an endpoint.¬
!                 fm_integrate will initially have very slow convergence and then will try to¬
!                 isolate the singularity and split into two integrals with the singularity at¬
!                 endpoints.¬
¬
!                 This strategy works here, but it is slower and doesn't always succeed.¬
!                 Case 6 shows a better way to handle interior singularities.¬
¬



      n = 5¬
      k = 150¬
      call fm_set(k+20)¬
      call fm_pi(pi)¬
      write (*, "(//)")¬
      a = pi/3¬
      b = pi/2¬
      tol = to_fm(10) ** (-k)¬
      kprt = 1¬
      nw = 6¬
¬
      call fm_integrate(f, n, a, b, tol, result, kprt, nw)¬
¬
      seven = 7¬
      check = ( sqrt(seven) / 168 ) * ( polygamma(1, 1/seven) + polygamma(1, 2/seven) -  &¬
                                        polygamma(1, 3/seven) + polygamma(1, 4/seven) -  &¬
                                        polygamma(1, 5/seven) - polygamma(1, 6/seven) )¬
      err = abs( result - check )¬
      call fm_form('es12.4', err, st1)¬
      write (*, "(/10x, a, i2, a, a)") ' Error for case ', n, ' = ', trim(st1)¬
      if (err > tol) n_errors = n_errors + 1¬
¬
¬
¬
!             6.  Same integral as case 5.¬
¬
!                 integrate  log( abs( ( tan(t) + sqrt(7) ) / ( tan(t) - sqrt(7) ) ) )¬
!                            from  pi/3 to pi/2.¬
¬
!                 Set tolerance to give 150 digits.¬
¬
!                 Split into two integrals and change variables to make the endpoints exact.¬
!                 This will be faster than making fm_integrate search for the interior singularity¬
!                 as in case 5.¬
!                 Call the two function numbers 61 and 62.¬
¬
!                 1.  from  pi/3  to  atan(sqrt(7)).¬
!                     Let  u = ( t - pi/3 ) / ( atan( sqrt(7) ) - pi/3 )¬
¬
!                 2.  from  atan(sqrt(7)) to pi/2.¬
!                     Let  v = ( t - atan(sqrt(7)) ) / ( pi/2 - atan( sqrt(7) ) )¬
¬
!                 This gives two integrals from 0 to 1, then we add the two results.¬
¬
      n = 6¬
      k = 150¬
      call fm_set(k+20)¬
      call fm_pi(pi)¬
      write (*, "(//)")¬
      a = 0¬
      b = 1¬
      tol = to_fm(10) ** (-k)¬
      kprt = 1¬
      nw = 6¬
¬
      call fm_integrate(f, 61, a, b, tol, r1, kprt, nw)¬
      call fm_integrate(f, 62, a, b, tol, r2, kprt, nw)¬
      result = r1 + r2¬



¬
      write (*,*) ' '¬
      write (*,*) ' Adding these last two integrals gives the case 6 result:'¬
      write (*,*) ' '¬
      call fm_print(result)¬
¬
      seven = 7¬
      check = ( sqrt(seven) / 168 ) * ( polygamma(1, 1/seven) + polygamma(1, 2/seven) -  &¬
                                        polygamma(1, 3/seven) + polygamma(1, 4/seven) -  &¬
                                        polygamma(1, 5/seven) - polygamma(1, 6/seven) )¬
      err = abs( result - check )¬
      call fm_form('es12.4', err, st1)¬
      write (*, "(/10x, a, i2, a, a)") ' Error for case ', n, ' = ', trim(st1)¬
      if (err > tol) n_errors = n_errors + 1¬
¬
¬
¬
!             7.  Same integral as cases 5 and 6.¬
!                 Combine these two integrals into one, so only one call to fm_integrate is needed.¬
!                 This will be faster than doing two calls as in case 6.¬
¬
!                 integrate  log( abs( ( tan(t) + sqrt(7) ) / ( tan(t) - sqrt(7) ) ) )¬
!                            from  pi/3 to pi/2.¬
¬
!                 Set tolerance to give 150 digits.¬
¬
!                 Split into two integrals and change variables to make the endpoints exact.¬
!                 Both new integrals are from 0 to 1.¬
¬
!                 1.  from  pi/3  to  atan(sqrt(7)).¬
!                     Let  u = ( t - pi/3 ) / ( atan( sqrt(7) ) - pi/3 )¬
¬
!                 2.  from  atan(sqrt(7)) to pi/2.¬
!                     Let  v = ( t - atan(sqrt(7)) ) / ( pi/2 - atan( sqrt(7) ) )¬
¬
      n = 7¬
      k = 150¬
      call fm_set(k+20)¬
      call fm_pi(pi)¬
      write (*, "(//)")¬
      a = 0¬
      b = 1¬
      tol = to_fm(10) ** (-k)¬
      kprt = 1¬
      nw = 6¬
¬
      call fm_integrate(f, 7, a, b, tol, result, kprt, nw)¬
¬
      seven = 7¬
      check = ( sqrt(seven) / 168 ) * ( polygamma(1, 1/seven) + polygamma(1, 2/seven) -  &¬
                                        polygamma(1, 3/seven) + polygamma(1, 4/seven) -  &¬
                                        polygamma(1, 5/seven) - polygamma(1, 6/seven) )¬
      err = abs( result - check )¬
      call fm_form('es12.4', err, st1)¬
      write (*, "(/10x, a, i2, a, a)") ' Error for case ', n, ' = ', trim(st1)¬
      if (err > tol) n_errors = n_errors + 1¬
¬
¬



¬
      write (*,*) ' '¬
      write (*,*) ' '¬
      if (n_errors == 0) then¬
          write (*,*) ' All results were ok -- no errors were found.'¬
      else¬
          write (*,*) n_errors, ' error(s) were found.'¬
      endif¬
      write (*,*) ' '¬
¬
      stop¬
      end program test¬
¬
      function f(x, n)     result (return_value)¬
      use fmzm¬
      implicit none¬
¬
      type (fm) :: return_value, x¬
      integer :: n¬
      intent (in) :: x, n¬
      type (fm), save :: c1, c2, pi, sqrt7, tanx¬
¬
      if (n == 1) then¬
          return_value = log(x) * cos(x)¬
      else if (n == 2) then¬
          return_value = log( gamma( x ) )¬
      else if (n == 3) then¬
¬
!             The original limits from 0 to pi/2 have been changed to 0 to 1.¬
¬
          call fm_pi(pi)¬
          return_value = pi * sqrt( abs( tan( pi * x / 2 ) ) ) / 2¬
      else if (n == 4) then¬
¬
!                Before the 2023 version of FM, exp could underflow and then make f unknown.¬
!                The previous code here checked for underflow and set f = 0 in that case.¬
¬
!          return_value = exp( -(1 - 1/x)**2 / 2 )¬
!          if ( is_underflow(return_value) ) then¬
!              return_value = 0¬
!          else¬
!              return_value = return_value / x**2¬
!          endif¬
¬
!                Starting with the 2023 version, FM's exception handling is stronger, so¬
!                now these undeflows in exp don't need to be trapped and the integration¬
!                works as intented.¬
¬
          return_value = exp( -(1 - 1/x)**2 / 2 ) / x**2¬
      else if (n == 5) then¬
          sqrt7 = sqrt(to_fm(7))¬
          tanx = tan(x)¬
          return_value = log( abs( ( tanx + sqrt7 ) / ( tanx - sqrt7 ) ) )¬
      else if (n == 61) then¬
          call fm_pi(pi)¬
¬
!             It is tempting to compute constants like c1, c2, sqrt7 once and then save them for¬
!             use in subsequent calls to f.  That can be done, but it is trickier than it seems,¬



!             since fm_integrate may call f with different precision levels during one integration,¬
!             so it is easy to not have the right precision in a saved variable.¬
!             Here we just compute them each time, making the logic straightforward while the¬
!             function evaluations are somewhat slower.¬
¬
          sqrt7 = sqrt(to_fm(7))¬
          c1 = atan(sqrt7) - pi/3¬
          tanx = tan( c1*x + pi/3 )¬
          return_value = c1 * log( abs( ( tanx + sqrt7 ) / ( tanx - sqrt7 ) ) )¬
      else if (n == 62) then¬
          call fm_pi(pi)¬
          sqrt7 = sqrt(to_fm(7))¬
          c2 = atan(sqrt7)¬
          c1 = pi/2 - c2¬
          tanx = tan( c1*x + c2 )¬
          return_value = c1 * log( abs( ( tanx + sqrt7 ) / ( tanx - sqrt7 ) ) )¬
      else if (n == 7) then¬
¬
!             Combine the two integrals into one.¬
¬
          call fm_pi(pi)¬
          sqrt7 = sqrt(to_fm(7))¬
          c2 = atan(sqrt7)¬
          c1 = c2 - pi/3¬
          tanx = tan( c1*x + pi/3 )¬
          return_value = c1 * log( abs( ( tanx + sqrt7 ) / ( tanx - sqrt7 ) ) )¬
¬
          c1 = pi/2 - c2¬
          tanx = tan( c1*x + c2 )¬
          return_value = return_value + c1 * log( abs( ( tanx + sqrt7 ) / ( tanx - sqrt7 ) ) )¬
      endif¬
¬
      end function f¬


