
Efficient Multiple -Precision Evaluation of Elementary Functions

By David M. Smith

Abstract. Let M(t) denote the time required to multiply two t-digit numbers using base b arithmetic.
Methods are presented for computing the elementary functions in O(t 1/3M(t)) time.

1. Introduction. In [2] Brent shows that the elementary functions can be computed
with t digits of precision using base b arithmetic in O(M(t) log t) operations. M(t) repre-
sents the time required to perform one t–digit multiplication. These are the fastest known
methods asymptotically, but because the algorithms are complicated, for precisions of no
more than a few thousand digits there are more efficient algorithms.

For commonly used precisions the best methods currently in use run in O(t 1/2M(t))
time [1], [3]. At these precisions M(t) = O(t2), although faster methods exist for high
precision [4]. This paper presents similar algorithms for which the running time has been
improved to O(t 1/3M(t)). Because this improvement is fairly simple, the resulting algo-
rithms are faster than those in [3] even at low precision.

2. Exponential and related functions. Function computations can often be
speeded up by using various identities to reduce the size of the argument prior to summing
a series and then reversing the reduction at the end. The exponential identity

exp(x) = exp(x/2k)2k

can be used as follows. Compute y = x/2k using a few divide by integer operations, then
sum the series for exp(y), then do k squarings to recover exp(x). Brent uses this technique
in [3] to obtain an algorithm with speed O(t 1/2M(t)).

Since the power series for exp(x) consists of terms which are closely related, the next
term can be obtained from the previous term by one division by a small integer and one
O(M(t)) operation to get the next power of x. The operations with integers and the
addition of the terms are all O(t), so reducing the number of multiplications is important.
The direct sum

exp(x) ≈ 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn

n!

requires (n− 1) multiplications, (n− 1) divisions by an integer, and n additions.

1985 Mathematics Subject Classification. Primary 65D15.

1

The sum can be rearranged as j concurrent sums

1 +xj/j! +x2j/(2j)! + · · ·
+x [1 +xj/(j + 1)! + · · ·
+x2 [1/2! +xj/(j + 2)! + · · ·
+x3 [1/3! +xj/(j + 3)! + · · ·
...

...
+xj−1 [1/(j − 1)! +xj/(2j − 1)! + · · ·

To add the next term to each of these sums S0, S1, . . . , Sj−1 requires one multiplication
to get the next power of xj , j divisions by an integer, and j additions. The original xj term
can be obtained in O(log j) multiplications using a binary exponentiation method [4]. Then
the polynomial Sj−1x

j−1+· · ·+S1x+S0 is evaluated as (· · · (Sj−1x+Sj−2)x+· · ·+S1)x+S0,
which takes (j − 1) multiplications and (j − 1) additions. For high precision this means
the number of multiplications needed to compute exp(x) is about n/j+ j and the number
of O(t) operations is the same as for the direct sum. Because the j sums must be stored
separately, this algorithm uses more space then the O(t1/2M(t)) algorithm. Although the
actual order of the operations is different here, the idea behind the arrangement above is
similar to one given by Paterson and Stockmeyer [5].

To estimate the time for this algorithm, assume that the argument is about 1 in
magnitude, base b arithmetic with t digits is used, and k halvings are done before the j
sums are computed. The original argument x is assumed to lie in some fixed, bounded
interval, and the number of terms n needed from a Taylor series is assumed to be a single-
precision integer. The value of n is determined by the equation

(2−k)n

n!
= b−t.

Using Stirling’s approximation for n! provides an approximation for the number of
terms in the series which must be taken:

n ≈ t log b
log t+ k log 2

.

Including the k squarings needed to reverse the argument reduction, the total work,
W , is estimated by the number of multiplications:

W ≈ t log b
j (log t+ k log 2)

+ j + k.

Choosing j and k to minimize W gives

j = t1/3 (log b / log 2)1/3,

k = t1/3 (log b / log 2)1/3 − log t / log 2.

2

Letting j and k be the nearest integers to these values gives an algorithm with O(t1/3)
multiplications, and it follows that exp(x) can be computed in O(t 1/3M(t)) time.

Logarithms can be computed in O(t 1/3M(t)) time using Newton iteration and the
exponential function. Starting with an approximation generated in single or double preci-
sion, the precision is doubled at each iteration until the desired multiple-precision accuracy
is obtained. Since only the last iteration is done at full precision computing the logarithm
takes only slightly longer than the exponential function.

Power functions and hyperbolic functions can be computed from formulas involving
exponential and/or logarithm functions, so they are also obtained in O(t 1/3M(t)) time.

3. Trigonometric functions. For sin(x) the argument can first be reduced to lie
between 0 and π/4 using various identities. Then this value is further reduced by dividing
by 3k, and then the Taylor series is added as j sums in a manner similar to exp(x). After
summing the series, sin(x) is recovered by k iterations of the formula

sin(3a) = sin(a) (3− 4 sin2(a)).

This requires two full multiplications for each of the k steps, the reduced argument is
about 3−k, and the sine series has only half as many terms as the exponential series. The
total number of O(M(t)) operations done in computing sin(x) is about

W ≈ t log b
2 j (log t+ k log 3)

+ j + 2 k.

Minimizing W gives

j = t1/3 (log b / log 3)1/3,

k =
1

2
t1/3 (log b / log 3)1/3 − log t / log 3,

so the sine is computed in O(t 1/3M(t)) time. Because the sum has only n/2 terms and
reversing the argument reduction takes longer than for the exponential, the algorithm does
less argument reduction than for exp(x).

The other trigonometric funtions can be computed from sin(x) and identities. Inverse
trigonometric functions can be done using Newton iteration and sin(x). This gives all the
trigonometric functions in O(t 1/3M(t)) time.

4. Results Using Fast Multiplication. If a multiplication algorithm can be used
which is much faster than O(t2), then the time taken for all the O(t) operations becomes
large enough to change the best values of j and k. There are O(n) additions and integer
divisions, with n = O(t/k), so the time for exp(x) could then be estimated by

T ≈
(

t log b
j (log t+ k log 2)

+ j + k

)
M(t) +

2t2

k

and a similar expression would apply to sin(x). If M(t) = o(t4/3) with j and k still O(t1/3)
as above, then the time spent on multiplications is o(t5/3), while the additions and integer
divisions take O(t5/3) time.

3

Mimimizing T gives different choices for j and k when M(t) = o(t4/3). In this case
the best values are j = O

(
4
√
M(t)

)
and k = O

(
t/
√
M(t)

)
, and the algorithm runs in

O
(
t
√
M(t)

)
time. So if a very fast multiplication algorithm is used, fewer concurrent

sums are needed and more argument reduction is done.

5. Conclusion. The formulas for j and k above are approximations which would
be modified slightly in a program for computing the elementary functions using multiple-
precision arithmetic.

The O(t) operations cannot be ignored completely at low precision, and some guard
digits are needed during the computation so that the final result can be rounded correctly
to t digits. During the summing of the series many of the operations can be done at less
than full precision.

These factors mean that a program which implements these O(t 1/3M(t)) algorithms
efficiently will use constants in the formulas for j and k that have been chosen to take
these details into account.

Tests comparing such a program with Brent’s MP package [3] have been made. Using
a large base for the arithmetic the O(t 1/3M(t)) versions are 10–20% faster for t = 10 and
increase to 2–3 times as fast for t = 250. These algorithms are now the fastest known
methods using multiple-precision arithmetic with low to moderate precision for computing
the elementary functions.

Mathematics Department
Loyola Marymount University
Los Angeles, CA 90045

1. R.P. Brent, “The Complexity of Multiple-Precision Arithmetic.” In Complexity of
Computational Problem Solving, R.S. Anderssen and R.P. Brent, Eds., U. of Queens-
land Press, Brisbane, 1976, pp. 126-165.

2. R.P. Brent, “Fast Multiple-Precision Evaluation of Elementary Functions.” J. ACM,
23 (1976), 242-251.

3. R.P. Brent, “A Fortran Multiple-Precision Arithmetic Package.” ACM Trans. Math.
Software, 4 (1978), 57-70.

4. D.E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms,
second edition. Addison Wesley, Reading, Mass., 1981.

5. M.S. Paterson and L.J. Stockmeyer, “On the Number of Nonscalar Multiplications
Necessary to Evaluate Polynomials.” SIAM J. Comput., 2 (1973), 60–66.

4

